Forage yield of tetraploid bahiagrass hybrids

Keywords: Apomixis, Genetic improvement, Intraspecific hybridization, Paspalum notatum

Abstract

In Southern Brazil, much of the livestock activity is developed in native grasslands. Studies about forage traits, frost tolerance and nutritional value of native forage species there has been increasing with better results of productive efficiency (animal gain). The objective of this work was to evaluate forage yield of forty-five intraspecific hybrids of segregating progenies of bahiagrass (Paspalum notatum Flügge) from agronomic analyses under greenhouse conditions and determine the reproduction mode of selected hybrids. The hybrids had great variability in all agronomic characteristics measured. The plants with the highest total dry mass production were 17PN10P3 and 17PN29P1 (sexual reproduction), 17PN10P5, 17PN16P3 and 17PN28P4 (apomictic reproduction). The high correlation of the total dry mass with tillers number and with the root dry mass demonstrate that the hybrids can be used as forage and also to reduce the effects of soil erosion in degraded areas. The evaluations of agronomic characteristics and the determination of the mode of reproduction of the selected hybrids allowed the identification of promising genetic materials for forage yield and to soil cover, selecting them for additional stages in the breeding program.

Downloads

Download data is not yet available.

References

ACUÑA, C. A. et al. Reproductive characterization of bahiagrass germplasm. Crop Science, v. 47, n. 4, p. 1711-1717, 2007. DOI: https://doi.org/10.2135/cropsci2006.08.0544. DOI: https://doi.org/10.2135/cropsci2006.08.0544

ACUÑA, C. A. et al. Bahiagrass tetraploid germplasm: reproductive and agronomic characterization of segregating progeny. Crop Science, v. 49, n. 2, p. 581–588, 2009. DOI: https://doi.org/10.2135/cropsci2008.07.0402. DOI: https://doi.org/10.2135/cropsci2008.07.0402

ACUÑA, C. A. et al. Tetraploid bahiagrass hybrids: breeding technique, genetic variability and proportion of heterotic hybrids. Euphytica, v. 179, n. 2, p. 227–235, 2011. DOI: https://doi.org/10.1007/s10681-010-0276-y. DOI: https://doi.org/10.1007/s10681-010-0276-y

AGUILERA, P. M. et al. Interspecific tetraploid hybrids between two forage grass species. Sexual Paspalum plicatulum and apomictic P. guenoarum. Crop Science, v. 51, n. 4, p. 1544–1550, 2011. DOI: https://doi.org/10.2135/cropsci2010.10.0610. DOI: https://doi.org/10.2135/cropsci2010.10.0610

AGUILERA, P. M. et al. Inheritance of aposporous apomixis in interspecific hybrids derived from sexual Paspalum plicatulum and apomictic Paspalum guenoarum. Crop Science, v. 55, n. 5, p. 1–10, 2015. DOI: https://doi.org/10.2135/cropsci2014.11.0770 DOI: https://doi.org/10.2135/cropsci2014.11.0770

BARBOSA, M. R. et al. Herbage accumulation of bahiagrass hybrids in two different environments in southern Brazil. Pesquisa Agropecuária Gaúcha, v. 25, n. 1/2, p. 58-69, 2019. DOI: https://doi.org/10.36812/pag.2019251/258-69. DOI: https://doi.org/10.36812/pag.2019251/258-69

BARROS, T. et al. Dissimilarity between Andropogon lateralis ecotypes under different defoliation frequencies and heights. Ciência Rural, v. 53, n. 3, 2022. DOI: https://doi.org/10.1590/0103-8478cr20201079. DOI: https://doi.org/10.1590/0103-8478cr20201079

BRUGNOLI, E. A. et al. Diversity in diploid. tetraploid. and mixed diploid–tetraploid populations of Paspalum simplex. Crop Science, v. 53. n. 4, p. 1509-1516, 2013. DOI: https://doi.org/10.2135/cropsci2012.08.0497. DOI: https://doi.org/10.2135/cropsci2012.08.0497

BURTON, G. W. Artificial fog chamber facilitates Paspalum emasculation. Journal American Society Agronomy, v. 40, p. 281-282, 1948. DOI: https://doi.org/10.2134/agronj1948.00021962004000030010x

CRUZ, C. D. Genes Software – extended and integrated with the R, Matlab and Selegen. Acta Scientiarum Agronomy, v. 38, n. 4, p. 547-552, 2016. DOI: https://doi.org/10.4025/actasciagron.v38i4.32629. DOI: https://doi.org/10.4025/actasciagron.v38i3.32629

DAURELIO, L. D. et al. Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Systematics and Evololution, v. 244, p. 189–199, 2004. DOI: https://doi.org/10.1007/s00606-003-0070-6. DOI: https://doi.org/10.1007/s00606-003-0070-6

FORTES, N. B. et al. Segregación de la apomixis en Paspalum notatum a partir de cruzamientos entre una planta sexual autotetraploide inducida y un padre apomíctico. In: REUNIÓN DE COMUNICACIONES CIENTÍFICAS Y TECNOLÓGICAS, 2004, Corrientes, Argentina. Resumenes [...]. Corrientes: Universidad Nacional del Nordeste, 2004.

KANDEMİR, N.; SAYGILI, I. Apomixis: new horizons in plant breeding. Turkish Journal of Agriculture and Forestry, v. 39, p. 549-556, 2015. DOI: https://doi.org/10.3906/tar-1409-74. DOI: https://doi.org/10.3906/tar-1409-74

KRYCKI. K. C.; SIMIONI, C.; DALL’AGNOL, M. Cytoembriyological evaluation. meiotic behavior and pollen viability of Paspalum notatum poliploidized plants. Crop Breeding and Applied Biotechnology, v. 16, n.4, p. 282-288, 2016. DOI: http://dx.doi.org/10.1590/1984- 70332016v16n4a43. DOI: https://doi.org/10.1590/1984-70332016v16n4a43

KRYCKI, K.C.K. et al. Reproductive analyses of intraspecific Paspalum notatum Flügge hybrids. Crop Breeding and Applied Biotechnology, v. 20, n.1, 2020. DOI: https://doi.org/10.1590/1984-70332020v20n1a14. DOI: https://doi.org/10.1590/1984-70332020v20n1a14

KUMAR, S.; SAXENA, S.; GUPTA, M. C. Marker-assisted screening of breeding populations of an apomictic grass Cenchrus ciliaris L. segregating for the mode of reproduction. Crop Breeding and Applied Biotechnology, v. 17, p. 10-17, 2017. DOI: https://doi.org/10.1590/1984-70332017v17n1a2. DOI: https://doi.org/10.1590/1984-70332017v17n1a2

MACHADO, J. M. et al. Reproduction mode and apospory expressivity of selected hybrids of Paspalum notatum Flügge. Journal of Plant Breeding and Crop Science, v. 13. n. 2, p. 58-63, 2021. DOI: https://doi.org/10.5897/JPBCS2021.0948. DOI: https://doi.org/10.5897/JPBCS2021.0948

MACHADO, J. M. et al. Agronomic evaluation of Paspalum notatum Flügge under the influence of photoperiod. Revista Brasileira de Zootecnia, v. 46, n. 1, p. 8-12, 2017. http://dx.doi.org/10.1590/S1806-92902017000100002. DOI: https://doi.org/10.1590/s1806-92902017000100002

MARCÓN, F. et al. Genetic distance and the relationship with heterosis and reproductive behavior in tetraploid bahiagrass hybrids. Molecular Breeding, v. 39, n. 6, [art.] 89,. p. 1-13, 2019. DOI: https://doi.org/10.1007/s11032-019-0994-3. DOI: https://doi.org/10.1007/s11032-019-0994-3

MARTINEZ, E. J. et al. Inheritance of apospory inbahiagrass, Paspalum notatum. Hereditas, v. 135, n. 1, p. 19-25, 2001. DOI: https://doi.org/10.1111/j.1601-5223.2001.00019.x. DOI: https://doi.org/10.1111/j.1601-5223.2001.00019.x

MILES, J. W. Apomixis for cultivar development in tropical forage grasses. Crop Science, v. 47, n. 53, 2007. DOI: https://doi.org/10.2135/cropsci2007.04.0016IPBS. DOI: https://doi.org/10.2135/cropsci2007.04.0016IPBS

MOTTA, E.A.M. et al. Forage performance of Paspalum hybrids from an interspecific cross. Ciência Rural, v. 46, n. 6, p. 1025–103, 2016. DOI: http://dx.doi.org/10.1590/0103-8478cr20150232. DOI: https://doi.org/10.1590/0103-8478cr20150232

MOTTA, E.A.M. et al. Agronomic performance of interspecific Paspalum hybrids under nitrogen fertilization or mixed with legumes. Agrosystems, Geosciences & Environment, v. 3, n. 1, 2020a. DOI: https://doi.org/10.1002/agg2.20127. DOI: https://doi.org/10.1002/agg2.20127

MOTTA, E.A.M. et al. Nutritive value and herbage mass in hybrids of Paspalum plicatulum × Paspalum guenoarum fertilized with nitrogen or in mixture with temperate legumes. Grassland Science, v. 66, n. 4, p. 261–270, 2020b. DOI: https://doi.org/10.1111/grs.12280. DOI: https://doi.org/10.1111/grs.12280

NOVO, P. E. et al. Interspecific hybrids between Paspalum plicatulum and P. oteroi: a key tool for forage breeding. Scientia Agricola, v. 73, n. 4, p. 356-362, 2016. DOI: http://dx.doi.org/10.1590/0103-9016-2015-0218. DOI: https://doi.org/10.1590/0103-9016-2015-0218

NOVO, P. E. et al. Hybridization and heterosis in the Plicatula group of Paspalum. Euphytica, v. 213, [art.] 198, 2017. DOI: https://doi.org/10.1007/s10681-017-1983-4. DOI: https://doi.org/10.1007/s10681-017-1983-4

ORTIZ, J. P. A. et al. Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Annals of Botany, v. 112, n. 5, p. 767-787, 2013. DOI: https://doi.org/10.1093/aob/mct152. DOI: https://doi.org/10.1093/aob/mct152

OZIAS-AKINS, P.; VAN DIJK, P. J. Mendelian genetics of apomixis in plants. Annual Review Genetics, v. 41, p. 509-537, 2007. DOI: https://doi.org/10.1146/annurev.genet.40.110405.090511 DOI: https://doi.org/10.1146/annurev.genet.40.110405.090511

PEREIRA, E. A. et al. Produção agronômica de uma coleção de acessos de Paspalum nicorae Parodi. Revista Brasileira de Zootecnia, v. 40, n. 3, p. 498-508, 2011. DOI: https://doi.org/10.1590/S1516-35982011000300006. DOI: https://doi.org/10.1590/S1516-35982011000300006

PEREIRA, E.A. et al. Variabilidade genética de caracteres forrageiros em acessos do gênero Paspalum em diferentes ambientes. Pesquisa Agropecuária Brasileira, v. 47, n. 10, p. 1533-1540, 2012. DOI: https://doi.org/10.1590/S0100-204X2012001000017. DOI: https://doi.org/10.1590/S0100-204X2012001000017

PEREIRA, E. A. et al. Genetic gain in apomictic species of the genus Paspalum. Revista Ceres, v. 64, p. 60-67, 2017. DOI: https://doi.org/10.1590/0034-737X201764010009. DOI: https://doi.org/10.1590/0034-737x201764010009

PILLAR, V. P. et al. (ed.). Campos sulinos: conservação e uso sustentável da biodiversidade. Brasília: Ministério do Meio Ambiente, 2009. 403 p.

POZZOBON, M. T.; VALLS. J. M. Chromosome number in germplasm accessions of Paspalum notatum (Gramineae). Brazilian Journal Genetics, v. 20, n. 1, p. 29-34, 1997. DOI: https://doi.org/10.1590/S0100-84551997000100006 DOI: https://doi.org/10.1590/S0100-84551997000100006

QUARIN, C. L. The nature of apomixis and its origin in Panicoid grasses. Apomixis Newsletter, v. 5, p. 7–15, 1992.

QUARIN, C. L. Registration of Q4188 and Q4205, sexual tetraploid germoplasm of bahiagrass. Crop Science, v. 43, n. 2, p. 745-746, 2003. DOI: https://doi.org/10.2135/cropsci2003.7450. DOI: https://doi.org/10.2135/cropsci2003.7450

QUARIN, C. L. et al. A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sexual Plant Reproduction, v. 13, p. 243-249, 2001. DOI: https://doi.org/10.1007/s004970100070. DOI: https://doi.org/10.1007/s004970100070

RODRIGUES, R. C. et al. Produção de massa seca, relação folha/colmo e alguns índices de crescimento do Brachiaria brizantha cv. Xaraés cultivado com a combinação de doses de nitrogênio e potássio. Revista Brasileira de Zootecnia, v. 37, n. 3, p. 394-400, 2008. DOI: https://doi.org/10.1590/S1516-35982008000300003. DOI: https://doi.org/10.1590/S1516-35982008000300003

SARAIVA, K. M. et al. Hybrids of Paspalum plicatulum × P. guenoarum: Selection for forage yield and cold tolerance in a subtropical environment. Tropical Grasslands-Forrajes Tropicales, v. 9, n. 1, p. 138–143, 2021. DOI: https://doi.org/10.17138/tgft(9)138-143. DOI: https://doi.org/10.17138/tgft(9)138-143

SAS. Statistical Analysis System. SAS STATISTICAL SOFTWARE. SAS/STAT User’s guide: statistics. Cary: SAS Institute Inc.., 2004. 1 CD-ROM.

SIMIONI, C.; VALLE, C. B do. Chromosome duplication in Brachiaria (A. Rich.) Stapf allows intraspecific crosses. Crop Breeding and Applied Biotechnology, v. 9, p. 328-334, 2009 DOI: https://doi.org/10.12702/1984-7033.v09n04a07

SPILLANE, C.; CURTIS, M. D.; GROSSNIKLAUS, U. Apomixis technology development – virgin births in farmers’ fields? National Biotechnology, v. 22, n. 6, p. 687–691, 2004. DOI: https://doi.org/10.1038/nbt976. DOI: https://doi.org/10.1038/nbt976

STEIN, J. et al. Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory -controlling locus. Theorical Applied Genetics, v. 109, p. 186–191, 2004. DOI: https://doi.org/10.1007/s00122-004-1614-z. DOI: https://doi.org/10.1007/s00122-004-1614-z

VALLS, J. F. M. et al. Ex situ management of plant genetic resources. In: MARIANTE, A.S.; SAMPAIO, M.J.A.; INGLIS, M.C.V. (Ed.). The state of Brazil’s plant genetic resources: second national report: conservation and sustainable utilization for food and agriculture. Brasília: Embrapa Technological Information, 2009a. p. 65-79.

VALLS, J. F. M. et al. Patrimônio florístico dos campos: potencialidades de uso e a conservação de seus recursos genéticos. In: PILLAR, V. P. et al. (Ed.). Campos sulinos: conservação e uso sustentável da biodiversidade. Brasília: Ministério do Meio Ambiente, 2009b. p. 139-154.

VENUTO, B. C. et al. Forage yield, nutritive value, and grazing tolerance of Dallisgrass Biotipes. Crop Science, v. 43, n. 1, p. 295-301, 2003. DOI: https://doi.org/10.2135/cropsci2003.2950 DOI: https://doi.org/10.2135/cropsci2003.0295

WEILER, R. L. et al. Chromosome doubling in Paspalum notatum var. saure (cultivar Pensacola). Crop Breeding and Applied Biotechnology, v. 15, n. 2, p. 106-111, 2015. DOI: http://dx.doi.org/10.1590/1984-70332015v15n2n19. DOI: https://doi.org/10.1590/1984-70332015v15n2n19

WEILER, R. L. et al. Determination of the mode of reproduction of bahiagrass hybrids using cytoembryological analysis and molecular markers. Revista Brasileira de Zootecnia, v. 46. n. 3, p. 185-191, 2017. DOI: http://dx.doi.org/10.1590/S1806-92902017000300002. DOI: https://doi.org/10.1590/s1806-92902017000300002

WEILER, R. L. et al. Intraspecific tetraploid hybrids of Paspalum notatum: agronomic characterization of segregating progeny. Scientia Agricola, v. 75, p. 36-42, 2018. DOI: https://doi.org/10.1590/1678-992x-2016-0354. DOI: https://doi.org/10.1590/1678-992x-2016-0354

YOUNG, B. A.; SHERWOOD, R. T.; BASHAW, E. C. Cleared-pistil and thick-sectioning techniques for detecting aposporous apomixis in grasses. Canadian Journal of Botany, v. 57, p. 1668-1672, 1979. DOI: https://doi.org/10.1139/b79-204

ZILLI, A. L. et al. Heterosis and expressiv¬ity of apospory in tetraploid Bahiagrass hybrids. Crop Science, v. 55, n. 3, p. 1189–1201, 2015. DOI: https://doi.org/10.2135/cropsci2014.10.0685. DOI: https://doi.org/10.2135/cropsci2014.10.0685

Published
2022-05-17
How to Cite
GHELLAR JUNIOR , I.; ANTONIOLLI, J.; KRYCKI, K.; LIMA, M.; WEILER, R.; BRUNES, A.; SIMIONI, C.; DALL’AGNOL, M. Forage yield of tetraploid bahiagrass hybrids. Pesquisa Agropecuária Gaúcha, v. 28, n. 1, p. 94-110, 17 May 2022.

Most read articles by the same author(s)