Antioxidants as nutraceuticals to mitigate oxidative stress in bees: systematic review
Abstract
Food production on large scale has led to an expansion in the use of pesticides. An important process in this dynamic is the pollination, carried out by bees, which is affected by the use that of these products considered stressors of the metabolism of these arthropods. Given these facts, the objective of this review was to verify whether the use of antioxidants in supplementing bee feeding can mitigate the oxidative stress caused by pesticides. The methodology used was an adaptation of the PRISMA method, selecting articles related to the theme, published in the last 20 years. Out of 196 articles found, 26 met the eligibility criteria and were included in the research. Thus, it was possible to state that pesticides aggravate oxidative stress, affect survival, induce the expression of regulating health genes, and may interfere with the prevalence of pathogens in bees. In this context, it was concluded that it is indicated to supplement the feeding of these insects with oxidation-protective compounds, but it is necessary to develop studies to determine the appropriate antioxidant as a nutraceutical, the stage of development in which it is most effective and the ideal dose to ensure less susceptibility of bees to pesticides.
Downloads
References
ALAUX, C. et al. Interactions between Nosemamicrospores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, v. 12, n. 3, p. 774-782, 2010. Wiley. DOI: http://dx.doi.org/10.1111/j.1462-2920.2009.02123.x. DOI: https://doi.org/10.1111/j.1462-2920.2009.02123.x
ALAUX, C. et al. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics, v. 12, 496 (2011). DOI: https://doi.org/10.1186/1471-2164-12-496. DOI: https://doi.org/10.1186/1471-2164-12-496
AMARO, P.; GODINHO, J. Pesticidas e abelhas. Rev. de Ciências Agrárias, Lisboa , v. 35, n. 2, p. 53-62, jul. 2012. Disponível em http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S0871-018X2012000200005&lng=pt&nrm=iso. Acesso em: 24 mar. 2020.
BARBOSA, D. B. et al. As abelhas e seu serviço ecossistêmico de polinização. Revista Eletrônica Científica da Uergs, v. 3, n. 4, p. 694-703, 30 dez. 2017. DOI: https://doi.org/10.21674/2448-0479.34.694-703. DOI: https://doi.org/10.21674/2448-0479.34.694-703
BARKER, R. J.; LEHNER, Y. Laboratory comparison of high fructose corn syrup, grape syrup, honey, and sucrose syrup as maintenance food for caged honey bees. Apidologie, v. 9, n. 2, p. 111-116, 1978. Springer Science and Business Media LLC. DOI: https://doi.org/10.1051/apido:19780203. DOI: https://doi.org/10.1051/apido:19780203
BARROS, D. C. B. de. et al. Função da glândula mandibular na nutrição de abelhas Apis mellifera L. In: JORNADA CIENTÍFICA E TECNOLÓGICA DA FATEC, 6., 2017, Botucatu. Anais. Botucatu: 2017. p.1-2.
BATISTA, M. D. C. da S. et al. ALIMENTAÇÃO DAS ABELHAS: revisão sobre a flora apícola e necessidades nutricionais. Journal of Biology & Pharmacy And Agricultural Management, v. 14, n. 1, p. 62-72, 2018. Disponível em: http://revista.uepb.edu.br/index.php/biofarm/article/view/4001/2444. Acesso em 06 abr. 2020.
BOILY, M.; ARAS, P.; JUMARIE, C. Foraging in maize field areas: a risky business? Science of The Total Environment, v. 601-602, p. 1522-1532, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.014. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.014
BRASIL, Empresa Brasileira de Pesquisa Agropecuária - Embrapa. TRAJETÓRIA DA AGRICULTURA BRASILEIRA. 2018. Disponível em: https://www.embrapa.br/visao/trajetoria-da-agricultura-brasileira. Acesso em: 18 abr. 2020.
BRASIL, Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Ciência e Tecnologia. Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados - Ministério da Saúde - Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Ciência e Tecnologia. Brasília: Editora do Ministério da Saúde, 2012. 92 p.: il. – (Série A: Normas e Manuais Técnicos).
CLAUDIANOS, C. et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, v. 15, n. 5, p. 615-636, 2006. DOI: https://doi.org/10.1111/j.1365-2583.2006.00672.x. DOI: https://doi.org/10.1111/j.1365-2583.2006.00672.x
DE MATTOS, I. M.; SOARES, A. E. E.; TARPY, D. R. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. Ecotoxicology, v. 27, n. 1, p. 32-44, 2017. DOI: https://doi.org/10.1007/s10646-017-1868-2. DOI: https://doi.org/10.1007/s10646-017-1868-2
DESNEUX, N.; DECOURTYE, A.; DELPUECH, J. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annual Review Of Entomology, v. 52, n. 1, p. 81-106, jan. 2007. Annual Reviews. DOI: http://dx.doi.org/10.1146/annurev.ento.52.110405.091440. DOI: https://doi.org/10.1146/annurev.ento.52.110405.091440
DÉMARES, F. J. et al. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide. Plos One, v. 11, n. 6, p. 1-17, 2016. DOI: https://doi.org/10.1371/journal.pone.0156584. DOI: https://doi.org/10.1371/journal.pone.0156584
DI PASQUALE, G. et al. Influence of Pollen Nutrition on Honey Bee Health: do pollen quality and diversity matter? Plos One, v. 8, n. 8, p. e72016-0, 2013. DOI: https://doi.org/10.1371/journal.pone.0072016. DOI: https://doi.org/10.1371/journal.pone.0072016
DICKEL, F. et al. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. Plos One, San Diego, v. 13, n. 1, p. 1-18, 2018. DOI: https://doi.org/10.1371/journal.pone.0191256. DOI: https://doi.org/10.1371/journal.pone.0191256
DOS SANTOS, C. F.; OTESBELGUE, A.; BLOCHTEIN, B. The dilemma of agricultural pollination in Brazil: beekeeping growth and insecticide use. Plos One, v. 13, n. 7, p. 1-13, 2018. DOI: https://doi.org/10.1371/journal.pone.0200286. DOI: https://doi.org/10.1371/journal.pone.0200286
FAO, Organização das Nações Unidas Para Agricultura e Alimentação. FAO's Global Action on Pollination Services for Sustainable Agriculture. 20 mai. 2018. Disponível em: http://www.fao.org/pollination/en/. Acesso em: 23 abr. 2020.
FARJAN, M. et al. Supplementing with vitamin C the diet of honeybees (Apis mellifera carnica) parasitized with Varroa destructor: effects on antioxidative status. Parasitology, v. 141, n. 6, p. 770-776, 2014. DOI: https://doi.org/10.1017/S0031182013002126. DOI: https://doi.org/10.1017/S0031182013002126
FERREIRA, I. C.F.R.; ABREU, R. M.V. Stress oxidativo, antioxidantes e fitoquímicos. Bioanálise, Ano IV , N. 2, p. 32-39, 2007. DOI: https://doi.org/10.5628/rpcd.07.02.257
FOLEY, K. et al. Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. Journal of Invertebrate Pathology, v. 111, n. 1, p. 68-73, 2012. DOI: https://doi.org/10.1016/j.jip.2012.06.006. DOI: https://doi.org/10.1016/j.jip.2012.06.006
GAUTHIER, M. et al. Chronic exposure to imidacloprid or thiamethoxam neonicotinoid causes oxidative damages and alters carotenoid-retinoid levels in caged honey bees (Apis mellifera). Scientific Reports, v. 8, n. 1, p. 1-11, 2018. DOI: https://doi.org/10.1038/s41598-018-34625-y. DOI: https://doi.org/10.1038/s41598-018-34625-y
GONG, Y.; DIAO, Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology, v. 26, n. 1, p. 1-12, 2016. Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/s10646-016-1742-7. DOI: https://doi.org/10.1007/s10646-016-1742-7
GOULSON, D. et al. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, v. 347, n. 6229, p. 1255957-1255957, 26 fev. 2015. American Association for the Advancement of Science (AAAS). DOI: http://dx.doi.org/10.1126/science.1255957. DOI: https://doi.org/10.1126/science.1255957
GREGORC, A. et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific Reports, v. 8, n. 1, p. 1-13, 2018. DOI:
https://doi.org/10.1038/s41598-018-33348-4. DOI: https://doi.org/10.1038/s41598-018-33348-4
HELMER, S. H. et al. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environmental Science And Pollution Research, v. 22, n. 11, p. 8010-8021, 2014. DOI: https://doi.org/10.1007/s11356-014-2879-7. DOI: https://doi.org/10.1007/s11356-014-2879-7
HENRY, M. et al. A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science, v. 336, n. 6079, p. 348-350, 29 mar. 2012. American Association for the Advancement of Science (AAAS). DOI: http://dx.doi.org/10.1126/science.1215039. DOI: https://doi.org/10.1126/science.1215039
HERBERT, L. T. et al. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. Journal Of Experimental Biology, v. 217, n. 19, p. 3457-3464, 2014. DOI: http://dx.doi.org/10.1242/jeb.109520. DOI: https://doi.org/10.1242/jeb.109520
JACK, C. J. et al. Effects of pollen dilution on infection of Nosema ceranae in honey bees. Journal of Insect Physiology, v. 87, p. 12-19, 2016. DOI: https://doi.org/10.1016/j.jinsphys.2016.01.004. DOI: https://doi.org/10.1016/j.jinsphys.2016.01.004
JOHNSON, R. M. et al. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera. Plos One, v. 7, n. 2, p. e31051, 3 fev. 2012. Public Library of Science (PLoS). DOI: https://doi.org/10.1371/journal.pone.0031051. DOI: https://doi.org/10.1371/journal.pone.0031051
JUMARIE, C.; BOILY, M.; ARAS, P. Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere, Montréal, v. 168, p. 163-170, fev. 2017. Elsevier BV. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.056. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.056
KLEIN, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proceedings Of The Royal Society B: Biological Sciences, v. 274, n. 1608, p. 303-313, 27 out. 2006. The Royal Society. DOI: https://doi.org/10.1098/rspb.2006.3721. DOI: https://doi.org/10.1098/rspb.2006.3721
KOJIĆ, D. et al. Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees. Environmental Science And Pollution Research, v. 27, n. 6, p. 6603-6612, 24 dez. 2019. Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/s11356-019-07385-z. DOI: https://doi.org/10.1007/s11356-019-07385-z
LIAO, L. H.; WU, W.; BERENBAUM, M. R. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera). Insects, v. 8, n. 1, p. 1-13, 14 fev. 2017. MDPI AG. DOI: https://doi.org/10.3390/insects8010022. DOI: https://doi.org/10.3390/insects8010022
MAO, W.; SCHULER, M. A.; BERENBAUM, M. R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings Of The National Academy Of Sciences, v. 110, n. 22, p. 8842-8846, 29 abr. 2013. Proceedings of the National Academy of Sciences. DOI: https://doi.org/10.1073/pnas.1303884110. DOI: https://doi.org/10.1073/pnas.1303884110
MEIRELLES R. N. et al. O furto como um fator limitante na criação de abelhas. Pesquisa Agropecuária Gaúcha, v. 26(1), 82-91, 16 abr. 2020. DOI: https://doi.org/10.36812/pag.202026182-91. DOI: https://doi.org/10.36812/pag.202026182-91
MITTON, G. A. et al. Impacts of dietary supplementation with p-coumaric acid and indole-3-acetic acid on survival and biochemical response of honey bees treated with tau-fluvalinate. Ecotoxicology And Environmental Safety, v. 189, p. 1-8, fev. 2020. Elsevier BV. DOI: https://doi.org/10.1016/j.ecoenv.2019.109917. DOI: https://doi.org/10.1016/j.ecoenv.2019.109917
MOGREN, C. L.; DANKA, R. G.; HEALY, K. Larval Pollen Stress Increases Adult Susceptibility to Clothianidin in Honey Bees. Insects, v.10, n.1, p.1-10, 08 jan. 2019. MDPI AG. DOI: https://doi.org/10.3390/insects10010021. DOI: https://doi.org/10.3390/insects10010021
MOMMAERTS, V. et al. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology, v. 19, n. 1, p. 207215, 13 set. 2009. Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/s10646-009-0406-2. DOI: https://doi.org/10.1007/s10646-009-0406-2
PINHO, M. P.; CALDAS, C. A.; ZALUSKI, R. Alimentação artificial para abelhas Apis mellifera africanizadas. In: MOSTRA CIENTÍFICA FAMEZ / UFMS, 2018, Campo Grande. Anais [...]. Campo Grande, 2018. p. 1-2. Disponível em: https://famez.ufms.br/files/2015/09/ALIMENTA%C3%87%C3%83O-ARTIFICIAL-PARA-ABELHAS-Apis-mellifera-AFRICANIZADAS.pdf. Acesso em: 20 maio 2020.
PIRES, C. S. S. et al. Enfraquecimento e perda de colônias de abelhas no Brasil: há casos de CCD? Pesquisa Agropecuária Brasileira, Brasília, v. 51, n. 5, p. 422-442, maio 2016. FapUNIFESP (SciELO). DOI: https://doi.org/10.1590/S0100-204X2016000500003. DOI: https://doi.org/10.1590/S0100-204X2016000500003
PISA, L. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science And Pollution Research: pmid:29124633, p. 1-49, 9 nov. 2017. Springer Science and Business Media LLC. DOI: http://dx.doi.org/10.1007/s11356-017-0341-3. DOI: https://doi.org/10.1007/s11356-017-0341-3
PREZENSKÁ, M.; SOBEKOVÁ, A.; SABOVÁ, L. Antioxidant enzymes of honeybee larvae exposed to oxamyl. Folia Veterinaria, Košice, v. 63, n. 4, p. 9-14, 1 dez. 2019. Walter de Gruyter GmbH. DOI: http://dx.doi.org/10.2478/fv-2019-0032. DOI: https://doi.org/10.2478/fv-2019-0032
QI, S. et al. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro. Ecotoxicology And Environmental Safety, v. 190, p. 1-8, mar. 2020. Elsevier BV. DOI: https://doi.org/10.1016/j.ecoenv.2019.110101. DOI: https://doi.org/10.1016/j.ecoenv.2019.110101
SEREIA, M. J. Suplementos protéicos para abelhas africanizadas submetidas à produção de geléia real. Maringa: UEM, 2009. 92 f. Tese (Doutorado) – Programa de Pós-Graduação em Zootecnia da Universidade Estadual de Maringá. Centro de Ciências, Universidade Estadual de Maringa – PR.
SHI, T. et al. Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. Pesticide Biochemistry and Physiology, Hefei, v. 152, p. 17-23, nov. 2018. Elsevier BV. DOI: https://doi.org/10.1016/j.pestbp.2018.08.003. DOI: https://doi.org/10.1016/j.pestbp.2018.08.003
SIES, H. Strategies of antioxidant defense. European Journal Of Biochemistry, Wiley, v. 215, n. 2, p. 213-219, jul. 1993. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18025.x. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18025.x
SIMONE-FINSTROM, M. et al. Propolis Counteracts Some Threats to Honey Bee Health. Insects, v.8, n.2, p.1-20, 29 abr.2017. MDPI AG. DOI: https://doi.org/10.3390/insects8020046. DOI: https://doi.org/10.3390/insects8020046
ŠKERGET, M. et al. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, v. 89, n. 2, p. 191-198, fev. 2005. Elsevier BV. DOI: https://doi.org/10.1016/j.foodchem.2004.02.025. DOI: https://doi.org/10.1016/j.foodchem.2004.02.025
THOMPSON, H. M. Behavioural Effects of Pesticides in Bees - Their Potential for Use in Risk Assessment. Ecotoxicology, v. 12, n. 1/4, p. 317-330, fev. 2003. Springer Science and Business Media LLC. DOI: http://dx.doi.org/10.1023/a:1022575315413. DOI: https://doi.org/10.1023/A:1022575315413
VALKO, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal Of Biochemistry & Cell Biology, v. 39, n. 1, p. 44-84, jan. 2007. Elsevier BV. DOI: https://doi.org/10.1016/j.biocel.2006.07.001. DOI: https://doi.org/10.1016/j.biocel.2006.07.001
VANDAME, R. et al. Alteration of the homing-flight in the honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environmental Toxicology and Chemistry, v. 14, n. 5, p. 855, maio 1995. Wiley. DOI: https://doi.org/10.1002/etc.5620140517. DOI: https://doi.org/10.1897/1552-8618(1995)14[855:AOTHIT]2.0.CO;2
WONG, M. J.; LIAO, L.; BERENBAUM, M. R. Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera). Plos One, v. 13, n. 11, p. 1-15, 1 nov. 2018. Public Library of Science (PLoS). DOI: https://doi.org/10.1371/journal.pone.0206625. DOI: https://doi.org/10.1371/journal.pone.0206625
ZHANG, G. et al. Zinc nutrition increases the antioxidant defenses of honey bees. Entomologia Experimentalis Et Applicata, v. 156, n. 3, p. 201-210, 29 jul. 2015. Wiley. DOI: https://doi.org/10.1111/eea.12342. DOI: https://doi.org/10.1111/eea.12342
Copyright (c) 2021 Pesquisa Agropecuária Gaúcha
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors declare that the work has not been previously published, nor sent simultaneously for publication in another journal and that they agree with the submission, content and transfer of the publication rights of the article in question to the scientific journal Pesquisa Agropecuária Gaúcha - PAG. The authors assume full responsibility for the originality of the article, and may incur on them any charges arising from claims by third parties in relation to the authorship of the article. The full reproduction of the journal's articles in other free-to-use electronic media is permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.