Antioxidants as nutraceuticals to mitigate oxidative stress in bees: systematic review

Keywords: Apis mellifera, Agrochemicals, Nutritional Supplementation, Oxidation-Reduction

Abstract

Food production on large scale has led to an expansion in the use of pesticides. An important process in this dynamic is the pollination, carried out by bees, which is affected by the use that of these products considered stressors of the metabolism of these arthropods. Given these facts, the objective of this review was to verify whether the use of antioxidants in supplementing bee feeding can mitigate the oxidative stress caused by pesticides. The methodology used was an adaptation of the PRISMA method, selecting articles related to the theme, published in the last 20 years. Out of 196 articles found, 26 met the eligibility criteria and were included in the research. Thus, it was possible to state that pesticides aggravate oxidative stress, affect survival, induce the expression of regulating health genes, and may interfere with the prevalence of pathogens in bees. In this context, it was concluded that it is indicated to supplement the feeding of these insects with oxidation-protective compounds, but it is necessary to develop studies to determine the appropriate antioxidant as a nutraceutical, the stage of development in which it is most effective and the ideal dose to ensure less susceptibility of bees to pesticides.

Downloads

Download data is not yet available.

Author Biographies

Jéssica Scheid da Silva, Centro Universitário Metodista IPA
Undergraduate in Biological Sciences
Marcello Ávila Mascarenhas, Centro Universitário Metodista IPA

Biochemical Pharmacist, Prof. Dr. advisor

References

ALAUX, C. et al. Interactions between Nosemamicrospores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, v. 12, n. 3, p. 774-782, 2010. Wiley. DOI: http://dx.doi.org/10.1111/j.1462-2920.2009.02123.x. DOI: https://doi.org/10.1111/j.1462-2920.2009.02123.x

ALAUX, C. et al. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics, v. 12, 496 (2011). DOI: https://doi.org/10.1186/1471-2164-12-496. DOI: https://doi.org/10.1186/1471-2164-12-496

AMARO, P.; GODINHO, J. Pesticidas e abelhas. Rev. de Ciências Agrárias, Lisboa , v. 35, n. 2, p. 53-62, jul. 2012. Disponível em http://www.scielo.mec.pt/scielo.php?script=sci_arttext&pid=S0871-018X2012000200005&lng=pt&nrm=iso. Acesso em: 24 mar. 2020.

BARBOSA, D. B. et al. As abelhas e seu serviço ecossistêmico de polinização. Revista Eletrônica Científica da Uergs, v. 3, n. 4, p. 694-703, 30 dez. 2017. DOI: https://doi.org/10.21674/2448-0479.34.694-703. DOI: https://doi.org/10.21674/2448-0479.34.694-703

BARKER, R. J.; LEHNER, Y. Laboratory comparison of high fructose corn syrup, grape syrup, honey, and sucrose syrup as maintenance food for caged honey bees. Apidologie, v. 9, n. 2, p. 111-116, 1978. Springer Science and Business Media LLC. DOI: https://doi.org/10.1051/apido:19780203. DOI: https://doi.org/10.1051/apido:19780203

BARROS, D. C. B. de. et al. Função da glândula mandibular na nutrição de abelhas Apis mellifera L. In: JORNADA CIENTÍFICA E TECNOLÓGICA DA FATEC, 6., 2017, Botucatu. Anais. Botucatu: 2017. p.1-2.

BATISTA, M. D. C. da S. et al. ALIMENTAÇÃO DAS ABELHAS: revisão sobre a flora apícola e necessidades nutricionais. Journal of Biology & Pharmacy And Agricultural Management, v. 14, n. 1, p. 62-72, 2018. Disponível em: http://revista.uepb.edu.br/index.php/biofarm/article/view/4001/2444. Acesso em 06 abr. 2020.

BOILY, M.; ARAS, P.; JUMARIE, C. Foraging in maize field areas: a risky business? Science of The Total Environment, v. 601-602, p. 1522-1532, 2017. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.014. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.014

BRASIL, Empresa Brasileira de Pesquisa Agropecuária - Embrapa. TRAJETÓRIA DA AGRICULTURA BRASILEIRA. 2018. Disponível em: https://www.embrapa.br/visao/trajetoria-da-agricultura-brasileira. Acesso em: 18 abr. 2020.

BRASIL, Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Ciência e Tecnologia. Diretrizes metodológicas: elaboração de revisão sistemática e metanálise de ensaios clínicos randomizados - Ministério da Saúde - Secretaria de Ciência, Tecnologia e Insumos Estratégicos, Departamento de Ciência e Tecnologia. Brasília: Editora do Ministério da Saúde, 2012. 92 p.: il. – (Série A: Normas e Manuais Técnicos).

CLAUDIANOS, C. et al. A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology, v. 15, n. 5, p. 615-636, 2006. DOI: https://doi.org/10.1111/j.1365-2583.2006.00672.x. DOI: https://doi.org/10.1111/j.1365-2583.2006.00672.x

DE MATTOS, I. M.; SOARES, A. E. E.; TARPY, D. R. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. Ecotoxicology, v. 27, n. 1, p. 32-44, 2017. DOI: https://doi.org/10.1007/s10646-017-1868-2. DOI: https://doi.org/10.1007/s10646-017-1868-2

DESNEUX, N.; DECOURTYE, A.; DELPUECH, J. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annual Review Of Entomology, v. 52, n. 1, p. 81-106, jan. 2007. Annual Reviews. DOI: http://dx.doi.org/10.1146/annurev.ento.52.110405.091440. DOI: https://doi.org/10.1146/annurev.ento.52.110405.091440

DÉMARES, F. J. et al. Sucrose Sensitivity of Honey Bees Is Differently Affected by Dietary Protein and a Neonicotinoid Pesticide. Plos One, v. 11, n. 6, p. 1-17, 2016. DOI: https://doi.org/10.1371/journal.pone.0156584. DOI: https://doi.org/10.1371/journal.pone.0156584

DI PASQUALE, G. et al. Influence of Pollen Nutrition on Honey Bee Health: do pollen quality and diversity matter? Plos One, v. 8, n. 8, p. e72016-0, 2013. DOI: https://doi.org/10.1371/journal.pone.0072016. DOI: https://doi.org/10.1371/journal.pone.0072016

DICKEL, F. et al. Increased survival of honeybees in the laboratory after simultaneous exposure to low doses of pesticides and bacteria. Plos One, San Diego, v. 13, n. 1, p. 1-18, 2018. DOI: https://doi.org/10.1371/journal.pone.0191256. DOI: https://doi.org/10.1371/journal.pone.0191256

DOS SANTOS, C. F.; OTESBELGUE, A.; BLOCHTEIN, B. The dilemma of agricultural pollination in Brazil: beekeeping growth and insecticide use. Plos One, v. 13, n. 7, p. 1-13, 2018. DOI: https://doi.org/10.1371/journal.pone.0200286. DOI: https://doi.org/10.1371/journal.pone.0200286

FAO, Organização das Nações Unidas Para Agricultura e Alimentação. FAO's Global Action on Pollination Services for Sustainable Agriculture. 20 mai. 2018. Disponível em: http://www.fao.org/pollination/en/. Acesso em: 23 abr. 2020.

FARJAN, M. et al. Supplementing with vitamin C the diet of honeybees (Apis mellifera carnica) parasitized with Varroa destructor: effects on antioxidative status. Parasitology, v. 141, n. 6, p. 770-776, 2014. DOI: https://doi.org/10.1017/S0031182013002126. DOI: https://doi.org/10.1017/S0031182013002126

FERREIRA, I. C.F.R.; ABREU, R. M.V. Stress oxidativo, antioxidantes e fitoquímicos. Bioanálise, Ano IV , N. 2, p. 32-39, 2007. DOI: https://doi.org/10.5628/rpcd.07.02.257

FOLEY, K. et al. Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. Journal of Invertebrate Pathology, v. 111, n. 1, p. 68-73, 2012. DOI: https://doi.org/10.1016/j.jip.2012.06.006. DOI: https://doi.org/10.1016/j.jip.2012.06.006

GAUTHIER, M. et al. Chronic exposure to imidacloprid or thiamethoxam neonicotinoid causes oxidative damages and alters carotenoid-retinoid levels in caged honey bees (Apis mellifera). Scientific Reports, v. 8, n. 1, p. 1-11, 2018. DOI: https://doi.org/10.1038/s41598-018-34625-y. DOI: https://doi.org/10.1038/s41598-018-34625-y

GONG, Y.; DIAO, Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology, v. 26, n. 1, p. 1-12, 2016. Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/s10646-016-1742-7. DOI: https://doi.org/10.1007/s10646-016-1742-7

GOULSON, D. et al. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, v. 347, n. 6229, p. 1255957-1255957, 26 fev. 2015. American Association for the Advancement of Science (AAAS). DOI: http://dx.doi.org/10.1126/science.1255957. DOI: https://doi.org/10.1126/science.1255957

GREGORC, A. et al. Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific Reports, v. 8, n. 1, p. 1-13, 2018. DOI:

https://doi.org/10.1038/s41598-018-33348-4. DOI: https://doi.org/10.1038/s41598-018-33348-4

HELMER, S. H. et al. Effects of realistic doses of atrazine, metolachlor, and glyphosate on lipid peroxidation and diet-derived antioxidants in caged honey bees (Apis mellifera). Environmental Science And Pollution Research, v. 22, n. 11, p. 8010-8021, 2014. DOI: https://doi.org/10.1007/s11356-014-2879-7. DOI: https://doi.org/10.1007/s11356-014-2879-7

HENRY, M. et al. A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science, v. 336, n. 6079, p. 348-350, 29 mar. 2012. American Association for the Advancement of Science (AAAS). DOI: http://dx.doi.org/10.1126/science.1215039. DOI: https://doi.org/10.1126/science.1215039

HERBERT, L. T. et al. Effects of field-realistic doses of glyphosate on honeybee appetitive behaviour. Journal Of Experimental Biology, v. 217, n. 19, p. 3457-3464, 2014. DOI: http://dx.doi.org/10.1242/jeb.109520. DOI: https://doi.org/10.1242/jeb.109520

JACK, C. J. et al. Effects of pollen dilution on infection of Nosema ceranae in honey bees. Journal of Insect Physiology, v. 87, p. 12-19, 2016. DOI: https://doi.org/10.1016/j.jinsphys.2016.01.004. DOI: https://doi.org/10.1016/j.jinsphys.2016.01.004

JOHNSON, R. M. et al. Ecologically Appropriate Xenobiotics Induce Cytochrome P450s in Apis mellifera. Plos One, v. 7, n. 2, p. e31051, 3 fev. 2012. Public Library of Science (PLoS). DOI: https://doi.org/10.1371/journal.pone.0031051. DOI: https://doi.org/10.1371/journal.pone.0031051

JUMARIE, C.; BOILY, M.; ARAS, P. Mixtures of herbicides and metals affect the redox system of honey bees. Chemosphere, Montréal, v. 168, p. 163-170, fev. 2017. Elsevier BV. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.056. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.056

KLEIN, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proceedings Of The Royal Society B: Biological Sciences, v. 274, n. 1608, p. 303-313, 27 out. 2006. The Royal Society. DOI: https://doi.org/10.1098/rspb.2006.3721. DOI: https://doi.org/10.1098/rspb.2006.3721

KOJIĆ, D. et al. Effect of fullerenol nanoparticles on oxidative stress induced by paraquat in honey bees. Environmental Science And Pollution Research, v. 27, n. 6, p. 6603-6612, 24 dez. 2019. Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/s11356-019-07385-z. DOI: https://doi.org/10.1007/s11356-019-07385-z

LIAO, L. H.; WU, W.; BERENBAUM, M. R. Impacts of Dietary Phytochemicals in the Presence and Absence of Pesticides on Longevity of Honey Bees (Apis mellifera). Insects, v. 8, n. 1, p. 1-13, 14 fev. 2017. MDPI AG. DOI: https://doi.org/10.3390/insects8010022. DOI: https://doi.org/10.3390/insects8010022

MAO, W.; SCHULER, M. A.; BERENBAUM, M. R. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proceedings Of The National Academy Of Sciences, v. 110, n. 22, p. 8842-8846, 29 abr. 2013. Proceedings of the National Academy of Sciences. DOI: https://doi.org/10.1073/pnas.1303884110. DOI: https://doi.org/10.1073/pnas.1303884110

MEIRELLES R. N. et al. O furto como um fator limitante na criação de abelhas. Pesquisa Agropecuária Gaúcha, v. 26(1), 82-91, 16 abr. 2020. DOI: https://doi.org/10.36812/pag.202026182-91. DOI: https://doi.org/10.36812/pag.202026182-91

MITTON, G. A. et al. Impacts of dietary supplementation with p-coumaric acid and indole-3-acetic acid on survival and biochemical response of honey bees treated with tau-fluvalinate. Ecotoxicology And Environmental Safety, v. 189, p. 1-8, fev. 2020. Elsevier BV. DOI: https://doi.org/10.1016/j.ecoenv.2019.109917. DOI: https://doi.org/10.1016/j.ecoenv.2019.109917

MOGREN, C. L.; DANKA, R. G.; HEALY, K. Larval Pollen Stress Increases Adult Susceptibility to Clothianidin in Honey Bees. Insects, v.10, n.1, p.1-10, 08 jan. 2019. MDPI AG. DOI: https://doi.org/10.3390/insects10010021. DOI: https://doi.org/10.3390/insects10010021

MOMMAERTS, V. et al. Risk assessment for side-effects of neonicotinoids against bumblebees with and without impairing foraging behavior. Ecotoxicology, v. 19, n. 1, p. 207215, 13 set. 2009. Springer Science and Business Media LLC. DOI: https://doi.org/10.1007/s10646-009-0406-2. DOI: https://doi.org/10.1007/s10646-009-0406-2

PINHO, M. P.; CALDAS, C. A.; ZALUSKI, R. Alimentação artificial para abelhas Apis mellifera africanizadas. In: MOSTRA CIENTÍFICA FAMEZ / UFMS, 2018, Campo Grande. Anais [...]. Campo Grande, 2018. p. 1-2. Disponível em: https://famez.ufms.br/files/2015/09/ALIMENTA%C3%87%C3%83O-ARTIFICIAL-PARA-ABELHAS-Apis-mellifera-AFRICANIZADAS.pdf. Acesso em: 20 maio 2020.

PIRES, C. S. S. et al. Enfraquecimento e perda de colônias de abelhas no Brasil: há casos de CCD? Pesquisa Agropecuária Brasileira, Brasília, v. 51, n. 5, p. 422-442, maio 2016. FapUNIFESP (SciELO). DOI: https://doi.org/10.1590/S0100-204X2016000500003. DOI: https://doi.org/10.1590/S0100-204X2016000500003

PISA, L. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environmental Science And Pollution Research: pmid:29124633, p. 1-49, 9 nov. 2017. Springer Science and Business Media LLC. DOI: http://dx.doi.org/10.1007/s11356-017-0341-3. DOI: https://doi.org/10.1007/s11356-017-0341-3

PREZENSKÁ, M.; SOBEKOVÁ, A.; SABOVÁ, L. Antioxidant enzymes of honeybee larvae exposed to oxamyl. Folia Veterinaria, Košice, v. 63, n. 4, p. 9-14, 1 dez. 2019. Walter de Gruyter GmbH. DOI: http://dx.doi.org/10.2478/fv-2019-0032. DOI: https://doi.org/10.2478/fv-2019-0032

QI, S. et al. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro. Ecotoxicology And Environmental Safety, v. 190, p. 1-8, mar. 2020. Elsevier BV. DOI: https://doi.org/10.1016/j.ecoenv.2019.110101. DOI: https://doi.org/10.1016/j.ecoenv.2019.110101

SEREIA, M. J. Suplementos protéicos para abelhas africanizadas submetidas à produção de geléia real. Maringa: UEM, 2009. 92 f. Tese (Doutorado) – Programa de Pós-Graduação em Zootecnia da Universidade Estadual de Maringá. Centro de Ciências, Universidade Estadual de Maringa – PR.

SHI, T. et al. Metabolomic analysis of honey bee, Apis mellifera L. response to thiacloprid. Pesticide Biochemistry and Physiology, Hefei, v. 152, p. 17-23, nov. 2018. Elsevier BV. DOI: https://doi.org/10.1016/j.pestbp.2018.08.003. DOI: https://doi.org/10.1016/j.pestbp.2018.08.003

SIES, H. Strategies of antioxidant defense. European Journal Of Biochemistry, Wiley, v. 215, n. 2, p. 213-219, jul. 1993. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18025.x. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18025.x

SIMONE-FINSTROM, M. et al. Propolis Counteracts Some Threats to Honey Bee Health. Insects, v.8, n.2, p.1-20, 29 abr.2017. MDPI AG. DOI: https://doi.org/10.3390/insects8020046. DOI: https://doi.org/10.3390/insects8020046

ŠKERGET, M. et al. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chemistry, v. 89, n. 2, p. 191-198, fev. 2005. Elsevier BV. DOI: https://doi.org/10.1016/j.foodchem.2004.02.025. DOI: https://doi.org/10.1016/j.foodchem.2004.02.025

THOMPSON, H. M. Behavioural Effects of Pesticides in Bees - Their Potential for Use in Risk Assessment. Ecotoxicology, v. 12, n. 1/4, p. 317-330, fev. 2003. Springer Science and Business Media LLC. DOI: http://dx.doi.org/10.1023/a:1022575315413. DOI: https://doi.org/10.1023/A:1022575315413

VALKO, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal Of Biochemistry & Cell Biology, v. 39, n. 1, p. 44-84, jan. 2007. Elsevier BV. DOI: https://doi.org/10.1016/j.biocel.2006.07.001. DOI: https://doi.org/10.1016/j.biocel.2006.07.001

VANDAME, R. et al. Alteration of the homing-flight in the honey bee Apis mellifera L. exposed to sublethal dose of deltamethrin. Environmental Toxicology and Chemistry, v. 14, n. 5, p. 855, maio 1995. Wiley. DOI: https://doi.org/10.1002/etc.5620140517. DOI: https://doi.org/10.1897/1552-8618(1995)14[855:AOTHIT]2.0.CO;2

WONG, M. J.; LIAO, L.; BERENBAUM, M. R. Biphasic concentration-dependent interaction between imidacloprid and dietary phytochemicals in honey bees (Apis mellifera). Plos One, v. 13, n. 11, p. 1-15, 1 nov. 2018. Public Library of Science (PLoS). DOI: https://doi.org/10.1371/journal.pone.0206625. DOI: https://doi.org/10.1371/journal.pone.0206625

ZHANG, G. et al. Zinc nutrition increases the antioxidant defenses of honey bees. Entomologia Experimentalis Et Applicata, v. 156, n. 3, p. 201-210, 29 jul. 2015. Wiley. DOI: https://doi.org/10.1111/eea.12342. DOI: https://doi.org/10.1111/eea.12342

Published
2021-04-01
How to Cite
SCHEID DA SILVA, J.; ÁVILA MASCARENHAS, M. Antioxidants as nutraceuticals to mitigate oxidative stress in bees: systematic review. Pesquisa Agropecuária Gaúcha, v. 27, n. 1, p. 53-73, 1 Apr. 2021.