Dairy cattle grazing compacts soil surface without reducing subsequent crop yield

  • Lucas Raimundo Rauber Universidade Federal de Santa Maria
  • Douglas Rodrigo Kaiser Universidade Federal da Fronteira Sul
  • Renan Costa Beber Vieira Universidade Federal da Fronteira Sul
  • Micael Stolben Mallman Universidade Federal de Santa Maria
  • Dalvan José Reinert Universidade Federal de Santa Maria
Keywords: Soil-plant-animal, Cattle trampling, Rotational grazing, Soil chiseling

Abstract

Integrated crop-livestock systems are being increasingly used to intensify food production and make it more sustainable. On the other hand, most studies have focused on extensive systems. This paper analyzed the effects of different managements on soil and plants in an intensive integrated system for milk production. An experiment of management systems was installed in southern Brazil, Rio Grande do Sul, on a Latossolo Vermelho (Oxisol), in 2015 to evaluate: rotational grazing of dairy cows in the winter; rotational grazing of dairy cows in winter followed by soil chiseling; and ungrazed area (control). Soil physical properties and yields of crops were evaluated. Trampling by dairy cows increased soil bulk density by 24 % (0.0-0.05 m), but did not influence yields of subsequent soybean or maize. Chiseling reduced the bulk density of the uppermost layer by 19 %, but did not affect the yields of subsequent crops. It was concluded that in years with abundant water, dairy cattle grazing in an integrated crop-livestock system in Southern Brazil compacts the soil surface, but does not compromise the soil physical processes related to the growth and development of subsequent crops.

Downloads

Download data is not yet available.

References

ALLEN, V. G. et al. An international terminology for grazing lands and grazing animals. Grass and Forage Science, v. 66, n. 1, p. 2–28, 2011. https://doi.org/10.1111/j.1365-2494.2010.00780.x.

AMBUS, J. V. et al. Changes in composition and functional soil properties in long-term no-till integrated crop-livestock system. Geoderma, v. 330, p. 232–243, 2018. https://doi.org/10.1016/j.geoderma.2018.06.005.

ANGHINONI, I.; CARVALHO, P. C. D. F.; COSTA, S. E. V. G. De A. Abordagem sistêmica do solo em sistemas integrados de produção agrícola e pecuária no subtrópico brasileiro. In: ARAÚJO, A. P.; AVELAR, J. R. B. (Org.). Tópicos em Ciência do Solo. 8. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2013. v. 8, p. 325–380.

ASSMANN, J. M. et al. Soil carbon and nitrogen stocks and fractions in a long-term integrated crop–livestock system under no-tillage in southern Brazil. Agriculture, Ecosystems and Environment, v. 190, p. 52–59, 2013. http://dx.doi.org/10.1016/j.agee.2013.12.003.

BELL, L. W. et al. Impacts of soil damage by grazing livestock on crop productivity. Soil and Tillage Research, v. 113, n. 1, p. 19–29, 2011. https://doi.org/10.1016/j.still.2011.02.003.

BONETTI, J. A. et al. Impact of a long-term crop-livestock system on the physical and hydraulic properties of an Oxisol. Soil and Tillage Research, v. 186, p. 280–291, 2019. https://doi.org/10.1016/j.still.2018.11.003.

CARVALHO, P. C. De F. et al. Managing grazing animals to achieve nutrient cycling and soil improvement in no-till integrated systems. Nutrient Cycling in Agroecosystems, p. 259–273, 2010. https://doi.org/10.1007/s10705-010-9360-x.

CARVALHO, P. C. F. et al. Animal production and soil characteristics from integrated crop-livestock systems: toward sustainable intensification. Journal of Animal Science, v. 96, p. 3513–3525, 2018. https://doi.org/10.1093/jas/sky085.

CECAGNO, D. et al. Least limiting water range and soybean yield in a long-term, no-till, integrated crop-livestock system under different grazing intensities. Soil and Tillage Research, v. 156, p. 54–62, 2016. https://doi.org/10.1016/j.still.2015.10.005.

CQFS. Manual de calagem e adubação para os estados do Rio Grande do Sul e de Santa Catarina. Comissão de Química e Fertilidade do Solo - RS/SC, 2016. Available from: https://www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf. Accessed: Feb. 10, 2023.

DEUSCHLE, D. et al. Erosion and hydrological response in no-tillage subjected to crop rotation intensification in southern Brazil. Geoderma, v. 340, p. 157–163, 2019. https://doi.org/10.1016/j.geoderma.2019.01.010.

DREWRY, J. J. Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. Agriculture, Ecosystems and Environment, v. 114, n. 2–4, p. 159–169, 2006. https://doi.org/10.1016/j.agee.2005.11.028.

DREWRY, J. J; CAMERON, K. C.; BUCHAN, G. D. Pasture yield and soil physical property responses to soil compaction from treading and grazing - A review. Australian Journal of Soil Research, v. 46, n. 3, p. 237–256, 2008. https://doi.org/10.1071/SR07125.

DREWRY, J. J; PATON, R. J. Effects of cattle treading and natural amelioration on soil physical properties and pasture under dairy farming in Southland, New Zealand. New Zealand Journal of Agricultural Research, v. 43, n. 3, p. 377–386, 2000. https://doi.org/10.1080/00288233.2000.9513438.

DREWRY, J. J; PATON, R. J; MONAGHAN, R. M. Soil compaction and recovery cycle on a Southland dairy farm: Implications for soil monitoring. Australian Journal of Soil Research, v. 42, n. 7, p. 851–856, 2004. https://doi.org/10.1071/SR03169.

EMBRAPA. Manual de métodos de análise de solo. 3. ed. Rio de Janeiro: Centro Nacional de Pesquisa de Solos, Embrapa, 2017. Available from: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo. Accessed: Feb. 5, 2023.

EMBRAPA. Sistema Brasileiro de Classificação de Solos. 5. ed. Brasília: 2018. Available from: https://www.embrapa.br/solos/sibcs. Accessed: Feb. 5, 2023.

FEDDES, R. A.; KOWALIK, P. L.; ZARADNY, H. Simulation of field water use and crop yield. Centre for Agricultural Publishing and Documentation, Wageningen. 1978. Available from: https://lib.ugent.be/catalog/rug01:000032129. Accessed: Feb. 5, 2023.

FAO. An international consultation on integrated crop-livestock systems for development - The Way Forward for Sustainable Production. Integrated Crop Managment, v. 13, p. 79, 2010. Available from: https://www.fao.org/3/i2160e/i2160e.pdf. Accessed: Feb. 10, 2023.

GREENWOOD, K. L.; MCKENZIE, B. M. Grazing effects on soil physical properties and the consequences for pastures: a review. Australian Journal of Experimental Agriculture, v. 41, p. 1231–1250, 2001. https://doi.org/10.1071/EA00102.

GUBIANI, P. I. et al. Transpiration reduction factor and soybean yield in low land soil with ridge and chiseling. Revista Brasileira de Ciencia do Solo, v. 42, p. 1–14, 2018. https://doi.org/10.1590/18069657rbcs20170282.

HOULBROOKE, D. J. et al. Grazing strategies to protect soil physical properties and maximise pasture yield on a Southland dairy farm. New Zealand Journal of Agricultural Research, v. 52, p. 323–336, 2009. https://doi.org/10.1080/00288230909510517.

KAISER, D. R. et al. Soil physical capacity and intensity properties for achieving sustainable agriculture in the subtropics and tropics: a review. In: KRÜMMELBEIN, J.; HORN, R.; PAGLIAI, M. (Org.). Advances in Geoecology: Soil Degradation, p. 282–339, 2013.

KOPPE, E. et al. Physical recovery of an oxisol subjected to four intensities of dairy cattle grazing. Soil and Tillage Research, v. 206, p. 104813, 2021. https://doi.org/10.1016/j.still.2020.104813.

KUNZ, M. et al. Compactação do solo na integração soja-pecuária de leite em Latossolo argiloso com semeadura direta e escarificação. Revista Brasileira de Ciencia do Solo, v. 37, p. 1699–1708, 2013. https://doi.org/10.1590/S0100-06832013000600026.

LEÃO, T. P. et al. Intervalo hídrico ótimo na avaliação de sistemas de pastejo contínuo e rotacionado. Revista Brasileira de Ciencia do Solo, v. 28, p. 415–422, 2004. https://doi.org/10.1590/s0100-06832004000300002.

LEMAIRE, G. et al. Integrated crop-livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agriculture, Ecosystems and Environment, v. 190, p. 4–8, 2014. https://doi.org/10.1016/j.agee.2013.08.009.

MORAES, A. et al. Integrated crop-livestock systems in the Brazilian subtropics. European Journal of Agronomy, v. 57, p. 4–9, 2014. https://doi.org/10.1016/j.eja.2013.10.004.

MORAES, M. T. De et al. Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil and Tillage Research, v. 200, n. March, p. 104611, 2020. https://doi.org/10.1016/j.still.2020.104611.

REICHERT, J. M.; SUZUKI, L. E. A. S.; REINERT, D. J. Compactação do solo em sistemas agropecuários e florestais: identificação, efeitos, limites críticos e mitigação. In: CERETTA, C. A.; SILVA, L. S.; REICHERT, J. M. (Org.). Tópicos em Ciência do Solo. 4. ed. Viçosa: Sociedade Brasileira de Ciência do Solo, p. 49–134, 2007.

SECCO, D. et al. Atributos físicos e rendimento de grãos de trigo, soja e milho em dois Latossolos compactados e escarificados. Ciencia Rural, v. 39, p. 58–64, 2009. https://doi.org/10.1590/S0103-84782009000100010.

ŠIMŮNEK, J. et al. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.17, HYDRUS Software Series 3. Department of Environmental Sciences, University of California Riverside. 2018.

SOIL SURVEY STAFF. Keys to soil taxonomy – Soil Survey Staff, twelfth edition. US Departament of Agriculture, Washington D.C 2014. Available from: https://nrcspad.sc.egov.usda.gov/DistributionCenter/product.aspx?ProductID=1059. Accessed: Feb. 10, 2023.

TAVARES FILHO, J. et al. Método do Perfil Cultural para avaliação do estado físico de solos em condições tropicais. Revista Brasileira de Ciência do Solo, v. 23, p. 393–399, 1999. https://doi.org/10.1590/s0100-06831999000200022.

TRACY, B. F.; ZHANG, Y. Soil Compaction, corn yield Response, and soil nutrient pool dynamics within an integrated crop-livestock system in illinois. Crop Science, v. 48, p. 1211–1218, 2008. https://doi.org/10.2135/cropsci2007.07.0390.

VAN GENUCHTEN, M. T. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J., v. 8, p. 892–898, 1980. Available from: https://acsess.onlinelibrary.wiley.com/doi/abs/10.2136/sssaj1980.03615995004400050002x. Accessed: Feb. 10, 2023.

VIZIOLI, B.; CAVALIERI-POLIZELI, K. M. V.; BARTH, G. Silage yield , organic carbon content and physical attributes of a chiseled Ferralsol under an integrated crop-livestock system. Revista Brasileira de Ciências Agrárias, v.14, n.3, p. 1–9, 2019. https://doi.org/10.5039/agraria.v14i3a6710

Published
2024-04-18
How to Cite
RAUBER, L. R.; KAISER, D. R.; VIEIRA, R. C. B.; MALLMAN, M. S.; REINERT, D. J. Dairy cattle grazing compacts soil surface without reducing subsequent crop yield. Pesquisa Agropecuária Gaúcha, v. 30, n. 1, p. 1-14, 18 Apr. 2024.