A scientific review on the correlation of the silver nanoparticle synthesis methods with host cytotoxicity
Abstract
Silver nanoparticles have been extensively researched and have several applications such as antimicrobial and anticancer, and can be used in the agricultural, biomedical, pharmaceutical, textile area, among others, but its toxicity is still little understood. Nanoparticles can measure between 1 – 100 nm and the most currently studied is the silver nanoparticle (AgNP). The main methods of synthesis are the chemical and the biogenic pathway, or green, which is less environmentally polluting, more environmentally friendly, and simpler, although standardization is more complex. Morphological and physical-chemical characteristics differ according to the synthesis method and, consequently, present different degrees of toxicity. Nanotoxicology studies the toxicity of nanoparticles on living organisms and scientists seek to know about the physical-chemical properties and their influence on interaction with the environment. It is known that there are several parameters that influence toxicity, such as dose, particle size, shape, morphology, surface chemistry, agglomeration/aggregation state, synthesis method, cell type and organism in which it is tested. Therefore, this article aims to address the main ways of synthesis of AgNPs, discuss the advantages and disadvantages of each method, the parameters that influence toxicity and examples of studies.
Downloads
References
AHAMED, M. et al. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicology and Applied Pharmacology, v. 233, n. 3, p. 404–410, 2008. DOI: doi.org/10.1016/j.taap.2008.09.015. DOI: https://doi.org/10.1016/j.taap.2008.09.015
AHMAD, A. et al. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, v. 28, n. 4, p. 313–318, 2003. DOI: doi.org/10.1016/S0927-7765(02)00174-1. DOI: https://doi.org/10.1016/S0927-7765(02)00174-1
ARORA, S. et al. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicology Letters, v. 179, n. 2, p. 93–100, 2008. DOI: doi.org/10.1016/j.toxlet.2008.04.009. DOI: https://doi.org/10.1016/j.toxlet.2008.04.009
ASANITHI, P.; CHAIYAKUN, S.; LIMSUWAN, P. Growth of silver nanoparticles by DC magnetron sputtering. Journal of Nanomaterials, v. 2012, 2012. DOI: doi.org/10.1155/2012/963609. DOI: https://doi.org/10.1155/2012/963609
ASHARANI, PV. et al. Toxicity of silver nanoparticles in zebrasifh models. Nanotechnology, v. 19, n. 25, 2008. DOI: doi.org/10.1088/0957-4484/19/25/255102. DOI: https://doi.org/10.1088/0957-4484/19/25/255102
BALAJI, D. S. et al. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B: Biointerfaces, v. 68, n. 1, p. 88–92, 2009. DOI: doi.org/10.1016/j.colsurfb.2008.09.022. DOI: https://doi.org/10.1016/j.colsurfb.2008.09.022
BOUDREAU, M. D. et al. Differential Effects of Silver Nanoparticles and Silver Ions on Tissue Accumulation, Distribution, and Toxicity in the Sprague Dawley Rat Following Daily Oral Gavage Administration for 13 Weeks. Toxicological Sciences, v. 150, n. 1, p. 131–160, 2016. DOI: doi.org/10.1093/toxsci/kfv318. DOI: https://doi.org/10.1093/toxsci/kfv318
BRAYNER, R. The toxicological impact of nanoparticles. Nanotoday, v. 3, n. 1-2, p. 48-55, 2008. DOI: doi.org/10.1016/S1748-0132(08)70015-X. DOI: https://doi.org/10.1016/S1748-0132(08)70015-X
CHERNOUSOVA, S.; EPPLE, M. Silver as antibacterial agent: Ion, nanoparticle, and metal, Angew Chem Int Ed Engl, 2013. DOI: doi.org/10.1002/anie.201205923. DOI: https://doi.org/10.1002/chin.201324233
CHI, Z. et al. A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, v. 72, n. 3, p. 577–581, 2009. DOI: doi.org/10.1016/j.saa.2008.10.044. DOI: https://doi.org/10.1016/j.saa.2008.10.044
CHOPRA, I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? Oxford Academic, v.59, n. 4, p. 587-590, 2007. DOI: doi.org/10.1093/jac/dkm006. DOI: https://doi.org/10.1093/jac/dkm006
DE LIMA, R.; SEABRA, A. B.; DURÁN, N. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology, v. 32, n. 11, p. 867–879, 2012. DOI: doi.org/10.1002/jat.2780. DOI: https://doi.org/10.1002/jat.2780
DE MAGLIE, M. et al. Dose and batch-dependent hepatobiliary toxicity of 10 nm silver nanoparticles. International Journal of health, animal science and food safety, v. 2, n. 1, 2015. DOI: doi.org/10.13130/2283-3927/5002.
DE MATTEIS V. et al. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials, v. 8, n. 5, p. 319, 2018. DOI: doi.org/10.3390/nano8050319. DOI: https://doi.org/10.3390/nano8050319
DÍAZ-CRUZ, C. et al. Effect of molecular weight of PEG or PVA as reducting-stabilizing agente in the green synthesis of silver-nanoparticles. Eur. Polym. J, v. 83, p. 265-277, 2016. DOI: doi.org/10.1016/j.eurpolymj.2016.08.025. DOI: https://doi.org/10.1016/j.eurpolymj.2016.08.025
DILNAWAZ, F.; ACHARYA, S.; SAHOO, S. K. Recent trends of nanomedicinal approaches in clinics, Int J Pharm, v. 538, n. 1-2, p. 263-78, 2018. DOI: doi.org/10.1016/j.ijpharm.2018.01.016. DOI: https://doi.org/10.1016/j.ijpharm.2018.01.016
DURÁN, N. et al. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, v. 3, 2005. DOI: doi.org/10.1186/1477-3155-3-8. DOI: https://doi.org/10.1186/1477-3155-3-8
DURÁN, N. et al. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, v. 3, n. 2, p. 203–208, 2007. DOI: doi.org/10.1166/jbn.2007.022. DOI: https://doi.org/10.1166/jbn.2007.022
DURÁN, N. et al. Silver nanoparticle protein corona and toxicity: A mini-review. J Nanobiotechnology, v. 13, n. 55, 2015. DOI: doi.org/10.1186/s12951-015-0114-4. DOI: https://doi.org/10.1186/s12951-015-0114-4
DURÁN, N. et al. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity, Nanomedicine: nanotechnology, biology and medicine., v. 12, n. 3, p. 789-99, 2016. DOI: doi.org/10.1016/j.nano.2015.11.016. DOI: https://doi.org/10.1016/j.nano.2015.11.016
DURÁN, N.; GUTERRES, S. S.; ALVES, O. L. Em Nanotoxicology - Materials, methodologies, and assessments. Springer: New York, 2014. DOI: https://doi.org/10.1007/978-1-4614-8993-1
DURÁN, N.; SEABRA, A. B.; Biogenic Synthesized Ag/Au Nanoparticles: Production, Characterization, and Applications. Current Nanoscience. v. 12., n. 2, p. 82-94, 2018. DOI: doi.org/10.2174/1573413714666171207160637. DOI: https://doi.org/10.2174/1573413714666171207160637
EBABE ELLE, R. et al. Dietary exposure to silver nanoparticles in Sprague-Dawley rats: Effects on oxidative stress and inflammation. Food and Chemical Toxicology, v. 60, p. 297–301, 2013. DOI: doi.org/10.1016/j.fct.2013.07.071. DOI: https://doi.org/10.1016/j.fct.2013.07.071
ELANGOVAN, K. et al. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. Journal of Photochemistry and Photobiology B: Biology, v. 151, p. 118–124, 2015. DOI: doi.org/10.1016/j.jphotobiol.2015.05.015. DOI: https://doi.org/10.1016/j.jphotobiol.2015.05.015
EUROPEAN COMMISSION. Definition of Nanomaterials. Available at: https://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm. Accessed on Jun 9, 2021.
FARIA, B. E. F. Produção e caracterização de nanopartículas de prata estabilizadas com polissacarídeos da goma do cajueiro: perspectivas na papiloscopia forense. Brasília: UnB, 2016. Dissertação (Mestrado em Ciências Médicas) – Programa de Pós-Graduação em Ciência do Solo. Faculdade de Medicina, Universidade de Brasília.
FARKAS, J. et al. Characterization of the effluent from a nanosilver producing washing machine. Environ Int., v. 37, n. 6, p. 1057-62, 2011. DOI: doi.org/10.1016/j.envint.2011.03.006. DOI: https://doi.org/10.1016/j.envint.2011.03.006
FEWTRELL, L.; MAJURU, B.; HUNTER, P. R. A re-assessment of the safety of silver in household water treatment: Rapid systematic review of mammalian in vivo genotoxicity studies. Environmental Health: A Global Access Science Source, v. 16, n. 1, p. 1–9, 2017. DOI: doi.org/10.1186/s12940-017-0279-4. DOI: https://doi.org/10.1186/s12940-017-0279-4
FISPQ. Ficha de Informações de Segurança de Produtos, 2014. Available at: https://www.farmacia.ufmg.br/wp-content/uploads/2018/10/FISPQ-Boro-hidreto-de-s%c3%b3dio.pdf. Accessed on Mar 28, 2022.
FOLDBJERG, R. et al. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicology Letters, v. 190, n. 2, p. 156–162, 2009. DOI: doi.org/10.1016/j.toxlet.2009.07.009. DOI: https://doi.org/10.1016/j.toxlet.2009.07.009
FOLDBJERG, R.; DANG, D. A.; AUTRUP, H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology, v. 85, n. 7, p. 743–750, 2011. DOI: doi.org/10.1007/s00204-010-0545-5. DOI: https://doi.org/10.1007/s00204-010-0545-5
FOX, C. L.; MODAK, S. M. Mechanism of silver sulfadiazine action on burn wound infections. Antimicrobial agents and chemotherapy, v. 5, n. 6, p. 582–588, 1974. DOI: doi.org/10.1128/aac.5.6.582. DOI: https://doi.org/10.1128/AAC.5.6.582
FROLICH, E.E.; FROLICH, E. Cytotoxicity of nanoparticles contained in food on intestinal cells and the gut microbiota. Int. J. Mol. Sci, v. 17, n. 4, p. 509, 2016. DOI: doi.org/10.3390/ijms17040509. DOI: https://doi.org/10.3390/ijms17040509
GE, L. et al. Nanosilver particles in medical applications: Synthesis, performance, and toxicity, Int J Nanomedicine. v. 16, n. 9, p. 2399-407, 2014. DOI: doi.org/10.2147/ijn.s55015. DOI: https://doi.org/10.2147/IJN.S55015
GERLOFF, K. et al. The Adverse Outcome Pathway approach in nanotoxicology. Computational Toxicology, v. 1, p. 3-11, 2017. DOI: doi.org/10.1016/j.comtox.2016.07.001. DOI: https://doi.org/10.1016/j.comtox.2016.07.001
GURR, J. R. et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, v. 213, n. 1–2, p. 66–73, 2005. DOI: doi.org/10.1016/j.tox.2005.05.007. DOI: https://doi.org/10.1016/j.tox.2005.05.007
GURUNATHAN, S. et al. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Research Letters, v. 9, n. 1, p. 1–17, 2014 DOI: doi.org/10.1186/1556-276x-9-373. DOI: https://doi.org/10.1186/1556-276X-9-373
HAMMES, I. S. Aplicação de Nanopartículas de prata em produtos agrícolas e seus efeitos no meio ambiente: uma revisão. 2020. Universidade Federal de Santa Catarina, 2020.
HSIAO, I. L. et al. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environmental Science and Technology, v. 49, n. 6, p. 3813–3821, 2015. DOI: doi.org/10.1021/es504705p. DOI: https://doi.org/10.1021/es504705p
HSIN, Y. H. et al. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, v. 179, n. 3, p. 130–139, 2008. DOI: doi.org/10.1016/j.toxlet.2008.04.015. DOI: https://doi.org/10.1016/j.toxlet.2008.04.015
KAEWAMATAWONG, T. et al. Acute and Subacute Pulmonary Toxicity of Low Dose of Ultrafine Colloidal Silica Particles in Mice after Intratracheal Instillation. Toxicologic Pathology, v. 34, n. 7, p. 958–965, 2006. DOI: doi.org/10.1080/01926230601094552. DOI: https://doi.org/10.1080/01926230601094552
KAEWAMATAWONG, T. et al. Acute Pulmonary Toxicity Caused by Exposure to Colloidal Silica: ParticlE Size Dependent Pathological Changes in Mice. Toxicologic Pathology, v. 33, n. 7, p. 743–9, 2005. DOI: doi.org/10.1080/01926230500416302. DOI: https://doi.org/10.1080/01926230500416302
KHAN, SU et al. Nanosilver: New ageless and versatile biomedical therapeutic scaffold. Int J Nanomedicine. v. 2018, n. 13. p. 733-762. 2018. DOI: doi.org/10.2147/IJN.S153167. DOI: https://doi.org/10.2147/IJN.S153167
KIM S. et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro, v. 23, n. 6, p. 1076–1084. 2009. DOI: doi.org/10.1016/j.tiv.2009.06.001. DOI: https://doi.org/10.1016/j.tiv.2009.06.001
KIM, J. S. et al. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, v. 3, n. 1, p. 95–101, 2007. DOI: doi.org/10.1016/j.nano.2006.12.001. DOI: https://doi.org/10.1016/j.nano.2006.12.001
KIM, J. S. et al. In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure. Safety and Health at Work, v. 2, n. 1, p. 34–38, 2011. DOI: doi.org/10.5491/SHAW.2011.2.1.34. DOI: https://doi.org/10.5491/SHAW.2011.2.1.34
KOWSHIK, M. et al. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain mky3. Nanotechnology, v. 14, n. 1, p. 95, 2002. DOI: doi.org/10.1088/0957-4484/14/1/321. DOI: https://doi.org/10.1088/0957-4484/14/1/321
LARESE, F. F. et al. Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicology Phamarcology, v. 72, n. 2, p. 310-322, 2015. DOI: doi.org/10.1016/j.yrtph.2015.05.005. DOI: https://doi.org/10.1016/j.yrtph.2015.05.005
LEE, KJ. et al. In vivo imaging of transport and biocompatibility of single silver nanoparticles in Early development of zebrafish embryos. ACS Nano, v. 1, n. 2, p. 133-43, 2007. DOI: doi.org/10.1021/nn700048y. DOI: https://doi.org/10.1021/nn700048y
LEITE, M. S. Diferenças Estruturais em Nanopartículas de Ag e Au Coloidais. Programa de Pós-Graduação em Química da Universidade Estadual de Campinas, Campinas, SP, 2003.
LEVIN, S.C. et al. Magnetic-Plasmonic CoreShell Nanoparticles. Journal American Chemical Society-ACSNano, v.3, n.6, p. 1379-1388, 2009. DOI: doi.org/10.1021/nn900118a.
LIU, J. et al. Controlled release of biologically active silver from nanosilver surfaces. ACS Nano, v. 4, n. 11, p. 6903–6913, 2010. DOI: doi.org/10.1021/nn102272n. DOI: https://doi.org/10.1021/nn102272n
LIU, W., et al. Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology, v. 4, n. 3, p. 319–330, 2010. DOI: doi.org/10.3109/17435390.2010.483745. DOI: https://doi.org/10.3109/17435390.2010.483745
MAGDOLENOVA, Z. et al. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles, Nanotoxicology, v. 8, n. 3, p. 233-78, 2013. DOI: doi.org/10.3109/17435390.2013.773464. DOI: https://doi.org/10.3109/17435390.2013.773464
MANSHIAN, B. B. et al. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles. ACS Nano, v. 9, n. 10, p. 10431–10444, 2015. DOI: doi.org/10.1021/acsnano.5b04661. DOI: https://doi.org/10.1021/acsnano.5b04661
MAO, B. H. et al. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy, Nanotoxicology, v. 10, n. 8, p. 1021-40, 2016. DOI: doi.org/10.1080/17435390.2016.1189614. DOI: https://doi.org/10.1080/17435390.2016.1189614
MARTINS, A.D.C. et al. Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. J. Toxicol. Environ. Health A., v. 80, p. 1156-1165. 2017. DOI: doi.org/10.1080/15287394.2017.1357376. DOI: https://doi.org/10.1080/15287394.2017.1357376
MASSINI, K.C E JESUS, K. R. Prospecção Dos Riscos Ambientais Das Nanotecnologias Aplicadas À Agricultura. Embrapa meio ambiente, p. 551–553, 2013.
MCSHAN, D.; RAY, P. C.; YU, H. Molecular toxicity mechanism of nanosilver, Jou. Food and Drug Analysis, v. 22, n. 1, p. 116-27, 2014. DOI: doi.org/10.1016/j.jfda.2014.01.010. DOI: https://doi.org/10.1016/j.jfda.2014.01.010
MIYAYAMA, T.; ARAI, Y.; HIRANO, S. Health effects of silver nanoparticles and silver ions. In: Biological Effects of Fibrous and Particulate Substances. Springer Japan, 2015. p. 137–147. DOI: doi.org/10.3390/ijms21072375. DOI: https://doi.org/10.1007/978-4-431-55732-6_7
MOHANPURIA, P.; RANA, N. K.; YADAV, S. K. Biosynthesis of nanoparticles: Technological concepts and future applications, Technology and Applications, v. 10, p. 507-17 2008. DOI: doi.org/10.1007/s11051-007-9275-x. DOI: https://doi.org/10.1007/s11051-007-9275-x
NAIK, R. R. et al. O. Biomimetic synthesis and patterning of silver nanoparticles. Nature Materials, v. 1, n. 3, p. 169–172, 2002. DOI: doi.org/10.1038/nmat758. DOI: https://doi.org/10.1038/nmat758
NAIR, P. M. et al. Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquatic Toxicology, v. 101, n. 1, p. 31–37, 2011. DOI: doi.org/10.1016/j.aquatox.2010.08.013. DOI: https://doi.org/10.1016/j.aquatox.2010.08.013
NAIR, P. M. G.; CHUNG, I. M. Assesment of silver nanoparticles induced physiological and molecular changes in Arabidopsis thaliana. Environ. Sci. Pollut. Res., v. 21, p. 8858-69, 2014. DOI: doi.org/10.1007/s11356-014-2822-y. DOI: https://doi.org/10.1007/s11356-014-2822-y
OBERDÖRSTER, G.; OBERDÖRSTER, E.; OBERDÖRSTER, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles, Environ Health Perspect, v. 113, n. 7, p. 823-39, 2005. DOI: doi.org/10.1289/ehp.7339. DOI: https://doi.org/10.1289/ehp.7339
ONG, C. et al. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci rep, v. 6, n. 20632, 2016. DOI: doi.org/10.1038/srep20632. DOI: https://doi.org/10.1038/srep20632
ORDZHONIKIDZE, CG. et al. Genotoxic effects of silver nanoparticles on mice in vivo. Acta Naturae (Russia), v. 1, n. 3, p. 99-101, 2009. DOI: https://doi.org/10.32607/20758251-2009-1-3-99-101
OTARI, S. V. et al. Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, v. 136, n. PB, p. 1175–1180, 2015. DOI: doi.org/10.1016/j.saa.2014.10.003. DOI: https://doi.org/10.1016/j.saa.2014.10.003
PANDA, K. K. et al. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicology in Vitro, v. 25, p. 1097–1105, 2011. DOI: doi.org/10.1016/j.tiv.2011.03.008. DOI: https://doi.org/10.1016/j.tiv.2011.03.008
PARK, E. J. et al. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicology in Vitro, v. 24, n. 3, p. 872–878, 2010. DOI: doi.org/10.1016/j.tiv.2009.12.001. DOI: https://doi.org/10.1016/j.tiv.2009.12.001
PARK, E.J. et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ. Toxicol. Pharmacol., v. 30, n. 2, p. 162–168, 2010. DOI: doi.org/10.1016/j.etap.2010.05.004. DOI: https://doi.org/10.1016/j.etap.2010.05.004
PARK, H.-J. et al. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J., v. 22, n. 3, p. 295-302, 2006. DOI: doi.org/10.5423/PPJ.2006.22.3.295. DOI: https://doi.org/10.5423/PPJ.2006.22.3.295
PARK, S.Y.; CHOI, J. Geno- and Ecotoxicity Evaluation of Silver Nanoparticles in Freshwater Crustacean Daphnia magna. Environmental Engineering Research, v. 15, n. 1, p. 23–27, 2010. DOI: doi.org/10.4491/eer.2010.15.1.428. DOI: https://doi.org/10.4491/eer.2010.15.1.428
PARK, Y. A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicological Research, v. 30, n. 3, p. 169–178, 2014. DOI: doi.org/10.5487/tr.2014.30.3.169. DOI: https://doi.org/10.5487/TR.2014.30.3.169
QIAN, Y. et al. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status. Biomaterials, v. 70, p. 12–22, 2015. DOI: doi.org/10.1016/j.biomaterials.2015.08.015. DOI: https://doi.org/10.1016/j.biomaterials.2015.08.015
QUINA, F.H. Nanotecnologia e o meio ambiente: perspectivas e riscos. Instituto de Química, Universidade de São Paulo, Depto. de Engenharia Química, Escola Politécnica, USP, Cubatão – SP. 2004. DOI: https://doi.org/10.1590/S0100-40422004000600031
RAJPUT, K. et al. A review on sythesis silver nano-particles. Int. J. Curr. Microbiol. App. Sci, v. 6, n. 7, p. 1513-1528, 2017. DOI: doi.org/10.20546/ijcmas.2017.602.182. DOI: https://doi.org/10.20546/ijcmas.2017.607.182
ROLDÁN, MV; PELLEGRI, N; DE SANCTIS, O. Electrochemical method for Ag-PEG nanoparticles synthesis. J Nanopart. V. 2013, p. 7, 2013. DOI: doi.org/10.1155/2013/524150. DOI: https://doi.org/10.1155/2013/524150
SAIFUDDIN, N.; WONG, C. W.; YASUMIRA, A. A. N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal of Chemistry, v. 6, n. 1, p. 61–70, 2009. DOI: doi.org/10.1155/2009/734264. DOI: https://doi.org/10.1155/2009/734264
SEABRA, A. B.; DURÁN, N. Nitric oxide-releasing vehicles for biomedical applications. J Mater. Chem., v. 20, n. 9, p. 1624–1637, 2010. DOI: doi.org/10.1039/B912493B. DOI: https://doi.org/10.1039/B912493B
SEIFFERT, J. et al. Pulmonary toxicity of instilled silver nanoparticles: Influence of size, coating and rat strain. PLoS ONE, v. 10, n. 3, 2015. DOI: doi.org/10.1371/journal.pone.0119726. DOI: https://doi.org/10.1371/journal.pone.0119726
SELVARAJ, C. et al. Molecular dynamics simulations and applications in computational toxicology and nanotoxicology. Food and Chemical Toxicology, v. 112, p. 495–506, 2018. DOI: doi.org/10.1016/j.fct.2017.08.028. DOI: https://doi.org/10.1016/j.fct.2017.08.028
SING, S. et al. A direct method for the preparation of glycolipid–metal nanoparticle conjugates: sophorolipids as reducing and capping agents for the synthesis of water re-dispersible silver nanoparticles and their antibacterial activity. New J. Chem, v. 33, p. 646–652, 2009. DOI: doi.org/10.1039/B811829A. DOI: https://doi.org/10.1039/B811829A
SINGH, J.et al. “Green” synthesis of metals and their oxide nanoparticles: Applications for environmental remediation, BioMed Central Ltd., 2018. DOI: doi.org/10.1186/s12951-018-0408-4. DOI: https://doi.org/10.1186/s12951-018-0408-4
SINTUBIN, L.; VERSTRAETE, W.; BOON, N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol Bioeng, v. 109, n. 10, p. 2422-36, 2012. DOI: doi.org/10.1002/bit.24570. DOI: https://doi.org/10.1002/bit.24570
SONG, J. Y.; KIM, B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess and Biosystems Engineering, v. 32, n. 1, p. 79–84, 2009. DOI: doi.org/10.1007/s00449-008-0224-6. DOI: https://doi.org/10.1007/s00449-008-0224-6
SOTIRIOU, G. A. et al. Nanosilver on nanostructured silica: Antibacterial activity and Ag surface area. Chemical Engineering Journal, v. 170, n. 2–3, p. 547–554, 2011. DOI: doi.org/10.1016/j.cej.2011.01.099. DOI: https://doi.org/10.1016/j.cej.2011.01.099
SOTIRIOU, GA; PRATSINIS, SE. Antibacterial activity of nanosilver ions and particles. Environ Sci Technol. v. 44, n. 14, p. 5649-54, 2010. DOI: doi.org/10.1021/es101072s. DOI: https://doi.org/10.1021/es101072s
TANG, J. et al. Distribution, translocation and accumulation of silver nanoparticles in rats. Journal of Nanoscience and Nanotechnology, v. 9, n. 8, p. 4924–4932, 2009. DOI: doi.org/10.1166/jnn.2009.1269. DOI: https://doi.org/10.1166/jnn.2009.1269
TANIGUCHI, N. On the Basic Concept of Nanotechnology: Proceedings of the International Conference on Production Engineering, 1974, Tokyo. Part II. Tokyo: Japan Society of Precision Engineering, 1974.
VERANO-BRAGA, T. et al. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano, v. 8, n. 3, p. 2161–2175, 2014. DOI: doi.org/10.1021/nn4050744. DOI: https://doi.org/10.1021/nn4050744
WISE, J. P. et al. Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquatic Toxicology, v. 97, n. 1, p. 34–41, 2010. DOI: doi.org/10.1016/j.aquatox.2009.11.016. DOI: https://doi.org/10.1016/j.aquatox.2009.11.016
XU, L. et al. Silver nanoparticles: Synthesis, medical applications and biosafety, Theranostics, v. 10, n. 20, p. 8996-9031, 2020. DOI: doi:10.7150/thno.45413. DOI: https://doi.org/10.7150/thno.45413
ZAHRA, A. Q. et al. A mini review on the synthesis of Ag-Nanoparticles by chemical reduction method and their biomedical applications. Journal of Engineering Sciences. v. 9, n. 1, 2016. DOI: doi.org/10.24949/njes.v9i1.181.
ZHANG, Q. et al. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? Journal of the American Chemical Society, v. 133, n. 46, p. 18931–18939, 2011. DOI: doi.org/10.1021/ja2080345. DOI: https://doi.org/10.1021/ja2080345
ZHANG, T. et al. Cytotoxic potential of silver nanoparticles, Yonsei Med J., v. 55, n. 2, p. 283-91, 2014. DOI: doi.org/10.3349/ymj.2014.55.2.283. DOI: https://doi.org/10.3349/ymj.2014.55.2.283
ZHANG, X. F.; LIU, Z. G.; SHEN, W.; GURUNATHAN, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci., v. 17, n. 9, p. 1534, 2016. DOI: doi.org/10.3390/ijms17091534. DOI: https://doi.org/10.3390/ijms17091534
Copyright (c) 2022 Pesquisa Agropecuária Gaúcha
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The authors declare that the work has not been previously published, nor sent simultaneously for publication in another journal and that they agree with the submission, content and transfer of the publication rights of the article in question to the scientific journal Pesquisa Agropecuária Gaúcha - PAG. The authors assume full responsibility for the originality of the article, and may incur on them any charges arising from claims by third parties in relation to the authorship of the article. The full reproduction of the journal's articles in other free-to-use electronic media is permitted under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.