Dose e período pós-imunoestimulação por Aeromonas hydrophila como indicador imunomodulatório na tilápia do Nilo (Oreochromis niloticus)
Resumo
Nos testes de desafio com peixes não há padronização na concentração e período de análise dos parâmetros. Este estudo investiga os efeitos imunomoduladores e citotóxicos de diferentes dosagens de Aeromonas hydrophila e dos períodos de avaliação dos parâmetros pós-imunoestimulação na tilápia do Nilo. Quatro níveis de doses bacterianas (½, ¼, ⅛ and 0 LD50) foram administrados e os parâmetros imunológicos, dados hematológicos e anormalidades eritrocitárias foram analisados aos 3, 7, 10 e 14 dias pós-infecção (dpi). A maior atividade respiratória dos leucócitos, globulinas totais e atividade de lisozima foram detectadas em 7 dpi. Considerando as doses bacterianas, a atividade da lisozima foi maior nas doses ⅛ LD50 e ¼ LD50 de A. hydrophila. As contagens de eritrócitos, hematócritos, hemoglobina, leucócitos, linfócitos, neutrófilos e monócitos permaneceram inalteradas. Após dez dias da injeção, o tratamento com solução salina exibiu anormalidades reduzidas, mostrando uma distinção notável dos tratamentos ⅛ LD50 e ¼ LD50, particularmente nas anormalidades de núcleos em forma de gancho e entalhados. As taxas de mortalidade foram mais elevadas nos grupos infectados, atingindo o pico em momentos diferentes, sendo as mais elevadas em ½ LD50. Para avaliação da imunidade da tilápia do Nilo após infecção por A. hydrophila, recomenda-se a dose de ¼ LD50 e coleta de sangue aos 7 e 10 dpi para parâmetros imunológicos e anormalidades nos eritrócitos da tilápia do Nilo, respectivamente.
Downloads
Referências
ABDEL-GHANY, H.M.; EL-SISY, D.M.; SALEM, M.ES. A comparative study of effects of curcumin and its nanoparticles on the growth, immunity and heat stress resistance of Nile tilapia (Oreochromis niloticus). Scientific Reports, v. 13, p. 2523, 2023. https://doi.org/10.1038/s41598-023-29343-z DOI: https://doi.org/10.1038/s41598-023-29343-z
ABDEL-RAZEK, N.; AWAD, S.M.; ABDEL-TAWWAB, M. Effect of dietary purslane (Portulaca oleracea L.) leaves powder on growth, immunostimulation, and protection of Nile tilapia, Oreochromis niloticus against Aeromonas hydrophila infection. Fish Physiology and Biochemistry, v. 45 p. 1907–1917, 2019. https://doi.org/10.1007/s10695-019-00685-8 DOI: https://doi.org/10.1007/s10695-019-00685-8
ABDEL-MAGID, A.D. et al. Nile tilapia resistant to Aeromonas hydrophila infection had higher serum IgM and antioxidant enzymes activities. Arabian Journal of Medical Sciences, v. 2, p. 9-12, 2018.
ABO-AL-ELA, H.G. et al. Vitamin C modulates the immunotoxic effect of 17 alpha-methyltestosterone in Nile tilapia. Biochemistry, v. 56, p. 2042–2050, 2017. https://doi.org/10.1021/acs.biochem.6b01284. DOI: https://doi.org/10.1021/acs.biochem.6b01284
ABOYADAK, I. et al. Molecular detection of Aeromonas hydrophila as the main cause of outbreak in tilapia farms in Egypt. Journal of Aquaculture & Marine Biology, v. 2, p. 45, 2015. https://doi.org/10.15406/jamb.2015.02.00045. DOI: https://doi.org/10.15406/jamb.2015.02.00045
ALGAMAL, A.M. et al. Tipagem Molecular, Antibiograma e Detecção Baseada em PCR-RFLP do Complexo Aeromonas hydrophila isolado de Oreochromis niloticus. Patógenos, v. 9, p. 238, 2020. https://doi.org/10.3390/pathogens9030238. DOI: https://doi.org/10.3390/pathogens9030238
AMAR, E.C. et al. Temporal changes in innate immunity parameters, epinecidin gene expression, and mortality in orange-spotted grouper, Epinephelus coioides experimentally infected with a fish pathogen, Vibrio harveyi JML1. Fish & Shellfish Immunology, v. 69: p. 153-163, 2017. https://doi.org/10.1016/j.fsi.2017.08.005. DOI: https://doi.org/10.1016/j.fsi.2017.08.005
AMLASHI, A.S. et al. Effect of dietary vitamin E on growth, muscle composition, hematological and immunological parameters of sub-yearling beluga Huso huso L. Fish & Shellfish Immunology, v. 30: p. 807-814, 2011. https://doi.org/10.1016/j.fsi.2011.01.002. DOI: https://doi.org/10.1016/j.fsi.2011.01.002
ANDERSON, D.P.; SIWICKI, A.K. Basic haematology and serology for fish health programs. In: SHARIFF, M.; ARTHUR, J.R.; SUBASINGHE, R.P. (Eds). Diseases in Asian aquaculture II. Asian Fisheries Society, Manila, Philippines, 1995. p. 185–202.
BAGDONAS, E.; LAZUTKA, J.R. Evaluation of DNA damage by means of the comet assay and micronucleus test in erythrocytes of Prussian carp (Carassius auratus gibelio) infected with ulcerative disease. Biologija, v. 53, p. 1-5, 2007. Available from: https://lmaleidykla.lt/ojs/index.php/biologija/article/view/742. Accessed: Mar. 10, 2024.
BANDEIRA JUNIOR, G., BALDISSEROTTO, B. Fish infections associated with the genus Aeromonas: a review of the effects on oxidative status. Journal of Applied Microbiology, v. 131, n. 3, p. 1083-1101, 2021. https://doi.org/10.1111/jam.14986. DOI: https://doi.org/10.1111/jam.14986
BARTON, B. A. Salmonid fishes differ in their cortisol and glucose responses to handling and transport stress. North American Journal of Aquaculture, v. 62, p. 12-18, 2000. https://doi.org/10.1577/1548-8454(2000)062<0012:SFDITC>2.0.CO;2. DOI: https://doi.org/10.1577/1548-8454(2000)062<0012:SFDITC>2.0.CO;2
BAVIA, L. et al. Advances in the complement system of a teleost fish, Oreochromis niloticus. Fish & Shellfish Immunology, v. 123, p. 61-74, 2022. https://doi.org/10.1016/j.fsi.2022.02.013. DOI: https://doi.org/10.1016/j.fsi.2022.02.013
BISCHOFBERGER, M.; IACOVACHE, I.; VAN DER
GOOT, F.G. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe, v. 12, n. 3, p. 266–275, 2012. https://doi.org/10.1016/j.chom.2012.08.005. DOI: https://doi.org/10.1016/j.chom.2012.08.005
BILLER, J.D. et al. Levamisole modulates the cell-mediated immunity of matrinxã, Brycon amazonicus. Boletim do Instituto de Pesca, v. 45, n. 2, p. e.445, 2019. https://doi.org/10.20950/1678-2305.2019.45.2.445. DOI: https://doi.org/10.20950/1678-2305.2019.45.2.445
BILLER-TAKAHASHI, J.D. et al. Leukocytes respiratory burst activity as indicator of innate immunity of pacu Piaractus mesopotamicus. Brazilian Journal of Biology, v. 73, p. 425-429, 2013. http://dx.doi.org/10.1590/S1519-69842013000200026. DOI: https://doi.org/10.1590/S1519-69842013000200026
CAVAŞ, T.; GARANKO, N.N.; ARKHIPCHUK, V.V. Induction of micronuclei and binuclei in blood, gill and liver cells of fishes subchronically exposed to cadmium chloride and copper sulphate. Food and Chemical Toxicology, v. 43, p. 569–574, 2005. https://doi.org/10.1016/j.fct.2004.12.014. DOI: https://doi.org/10.1016/j.fct.2004.12.014
CHARLIE-SILVA, I. et al. Acute-phase proteins during inflammatory reaction by bacterial infection: fish-model. Scientific Reports, v. 9, p. 4776, 2019. https://doi.org/10.1038/s41598-019-41312-z. DOI: https://doi.org/10.1038/s41598-019-41312-z
CHEN, X. et al. Modulation of growth performance, non-specific immunity, intestinal morphology, the response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella) by dietary supplementation of a multi-strain probiotic. Comparative Biochemistry and Physiology, Part C, v. 231, p. 108724, 2020. https://doi.org/10.1016/j.cbpc.2020.108724. DOI: https://doi.org/10.1016/j.cbpc.2020.108724
CLAUDIANO, G.S. et al. Hematological and immune changes in Piaractus mesopotamicus in the sepsis induced by Aeromonas hydrophila. Fish & Shellfish Immunology, v. 88, p. 259-265, 2019. https://doi.org/10.1016/j.fsi.2019.01.044. DOI: https://doi.org/10.1016/j.fsi.2019.01.044
COEURDACIER, J.L. et al. Alterations in total protein, IgM and specific antibody activity of male and female sea bass (Dicentrarchus labrax L., 1758) sera following injection with killed Vibrio anguillarum. Fish & Shellfish Immunology, v. 7, p. 151e160, 1997. https://doi.org/10.1006/fsim.1996.0071. DOI: https://doi.org/10.1006/fsim.1996.0071
DE CHAVEZ, P.D.; ENCINARES, N.D. Impact of Aeromonas hydrophila infection on freshwater aquaculture Center selected Tilapia (Oreochromis niloticus, FaST strain). International Journal of Fauna and Biological Studies, v. 5: p. 245–247, 2018. Available from: https://www.faunajournal.com/archives/2018/vol5issue1/PartD/5-1-40-335.pdf. Accessed: Nov. 08, 2023.
DEEPIKA, M.S. et al. Antibacterial synergy between rutin and florfenicol enhances therapeutic spectrum against drug resistant Aeromonas hydrophila. Microbial Pathogenesis, v. 135, p. 103612, 2019. https://doi.org/10.1016/j.micpath.2019.103612. DOI: https://doi.org/10.1016/j.micpath.2019.103612
DIAS, M.K.R. et al. Growth and hematological and immunological responses of Arapaima gigas fed diets supplemented with immunostimulant based on Saccharomyces cerevisiae and subjected to handling stress. Aquaculture Reports, v. 17, p. 100335, 2020. https://doi.org/10.1016/j.aqrep.2020.100335. DOI: https://doi.org/10.1016/j.aqrep.2020.100335
ELBAHNASWY, S.; ELSHOPAKEY, G.E. Differential gene expression and immune response of Nile tilapia (Oreochromis niloticus) challenged intraperitoneally with Photobacterium damselae and Aeromonas hydrophila demonstrating immunosuppression. Aquaculture, v. 526, p. 735364, 2020. https://doi.org/10.1016/j.aquaculture.2020.735364. DOI: https://doi.org/10.1016/j.aquaculture.2020.735364
ELLIS, A.E. The immunology of teleosts. In: ROBERT, R.J. (Ed.). Fish pathology. Bailliere Tindall, London, UK, 1989. p. 135-152.
ELLIS, A.E. Lysozyme assays. In: STOLEN, J.S.; FLETCHER, T.C.; ANDERSON, D.P.; ROBERTSON, B.S.; MUISWINKEL, W.B. (Eds.). Techniques in fish immunology. SOS Publications, Fair Haven, New Jersey, USA, 1990. p. 101-103.
EL-MAGD, M.A. et al. Association of MHC IIA polymorphisms with disease resistance in Aeromonas hydrophila - challenged Nile tilapia. Developmental & Comparative Immunology, v. 96, p. 126–134, 2019. https://doi.org/10.1016/j.dci.2019.03.002. DOI: https://doi.org/10.1016/j.dci.2019.03.002
EVENBERG, D. et al. Blood changes in carp (Cyprinus carpio) induced by ulcerative Aeromonas salmonicida infections. Veterinary Immunology and Immunopathology, v. 12, p. 321-330, 1986. https://doi.org/10.1016/0165-2427(86)90136-4. DOI: https://doi.org/10.1016/0165-2427(86)90136-4
GUPTA, A. et al. Immunomodulation by dietary supplements: a preventive health strategy for sustainable aquaculture of tropical freshwater fish, Labeo rohita (Hamilton, 1822). Reviews in Aquacaculture, v. 13, p. 2364–2394, 2021. https://doi.org/10.1111/raq.12581. DOI: https://doi.org/10.1111/raq.12581
IBRAHIM, D. et al. Interactive effects of dietary quercetin nanoparticles on growth, flesh antioxidant capacity and transcription of cytokines and Aeromonas hydrophila quorum sensing orchestrating genes in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, v. 119, p. 478–489, 2021. https://doi.org/10.1016/j.fsi.2021.10.034. DOI: https://doi.org/10.1016/j.fsi.2021.10.034
IBRAHIM, D. et al. Impacts of fortifying Nile tilapia (Oreochromis niloticus) diet with different strains of microalgae on its performance, fillet quality and disease resistance to Aeromonas hydrophila considering the interplay between antioxidant and inflammatory response. Antioxidants, v. 11, p. 2181, 2022. https://doi.org/10.3390/antiox11112181. DOI: https://doi.org/10.3390/antiox11112181
JARAMILLO JR., F.; GATLIN III, D.M. Comparison of purified and practical diets supplemented with or without β-Glucan and selenium on resistance of hybrid striped bass Morone chrysops X M. saxatilk to Streptococcus iniae infection. Journal of the World Aquaculture Society, v. 35, p. 245-252, 2004. https://doi.org/10.1111/j.1749-7345.2004.tb01081.x. DOI: https://doi.org/10.1111/j.1749-7345.2004.tb01081.x
KHALIL, F., EMEASH, H. Behaviors and Stereotypies of Nile Tilapia (Oreochromis niloticus) in Response to Experimental. Infection with Aeromonas hydrophila. Aquatic Sciences and Engineering, v. 33, n. 4, p. 124-130, 2018. 10.26650/ase2018407191 DOI: https://doi.org/10.26650/ASE2018407191
KIADALIRI, M.; FIROUZBAKHSH, F.; DELDAR, H. Effects of feeding with red algae (Laurencia caspica) hydroalcoholic extract on antioxidant defense, immune responses, and immune gene expression of kidney in rainbow trout (Oncorhynchus mykiss) infected with Aeromonas hydrophila, Aquaculture, v. 526, p. 735361, 2020. https://doi.org/10.1016/j.aquaculture.2020.735361. DOI: https://doi.org/10.1016/j.aquaculture.2020.735361
KLEIN, J. Immunology. Blackwell Scientific Publications Inc., Cambridge, Massachusetts, USA, 1990.
LATINNE, D. et al. Depletion of IgM xenoreactive natural antibodies by injection of anti-m monoclonal antibodies. Immunologycal Reviews, v. 141, p. 92e125, 1994. https://doi.org/10.1111/j.1600-065X.1994.tb00874.x. DOI: https://doi.org/10.1111/j.1600-065X.1994.tb00874.x
LIU, X. et al. The identification of polyvalent protective immunogens and immune abilities from the outer membrane proteins of Aeromonas hydrophila in fish. Fish & Shellfish Immunology, v. 128, p. 101–112, 2022. https://doi.org/10.1016/j.fsi.2022.07.057. DOI: https://doi.org/10.1016/j.fsi.2022.07.057
MALDONADO-GARCIA, M. et al. Antioxidant and immunostimulant potentials of Chenopodium ambrosioides L. in Pacific red snapper (Lutjanus peru). Aquaculture, v. 513, p. 734414, 2019. https://doi.org/10.1016/j.aquaculture.2019.734414. DOI: https://doi.org/10.1016/j.aquaculture.2019.734414
MANCHEÑO, J.M. et al. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. Journal of Biological Chemistry, v. 280, n. 17, p. 17251-17259, 2005. Available from: https://www.jbc.org/content/280/17/17251.full. Accessed: Mar. 10, 2024. DOI: https://doi.org/10.1074/jbc.M413933200
MEDEIROS, B.P. de et al. Food supplementation with essential oil of Lippia sidoides for Cyprinus carpio koi as prevention against Aeromonas hydrophila. Latin American Journal of Aquatic Research, v. 51, n. 5, p. 617-628, 2023. http://dx.doi.org/10.3856/vol51-issue5-fulltext-3039. DOI: https://doi.org/10.3856/vol51-issue5-fulltext-3039
MOREL, F.; DOUSSIERE J.; VIGNAIS, P.V. The superoxide-generating oxidase of phagocytic cells: physiological, molecular and pathological aspects. European Journal of Biochemistry, v. 201, p. 523-546, 1991. https://doi.org/10.1111/j.1432-1033.1991.tb16312.x DOI: https://doi.org/10.1111/j.1432-1033.1991.tb16312.x
MOUSTAFA, E.M. et al. Modulatory effects of fenugreek seeds powder on the histopathology, oxidative status, and immune related gene expression in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquaculture, v. 515, p. 734589, 2020. https://doi.org/10.1016/j.aquaculture.2019.734589 DOI: https://doi.org/10.1016/j.aquaculture.2019.734589
NAKANO, T. et al. Effect of severe environmental thermal stress on redox state in salmon. Redox Biology, v. 2, p. 772–776, 2014. https://doi.org/10.1016/j.redox.2014.05.007 DOI: https://doi.org/10.1016/j.redox.2014.05.007
NASCIMENTO, C.Z. et al. Feed for Nile tilapia broodstock and offspring supplemented with purified nucleotides boosts the juvenile’s health, growth, and the resistance face to transport and Aeromonas hydrophila challenges. Animal Feed Science and Technology, v. 297, p. 115568, 2023. https://doi.org/10.1016/j.anifeedsci.2023.115568 DOI: https://doi.org/10.1016/j.anifeedsci.2023.115568
NATHAN, C.F.; HIBBS, J.B. Role of nitric oxide synthesis in macrophage antimicrobial activity. Currunt Opinion in Immunology, v. 3, p. 65–70, 1991. https://doi.org/10.1016/0952-7915(91)90079-G DOI: https://doi.org/10.1016/0952-7915(91)90079-G
NEAMAT-ALLAH, A.N.F.; MAHMOUD, E.A.; MAHSOUB, Y. Effects of dietary white mulberry leaves on hemato-biochemical alterations, immunosuppression and oxidative stress induced by Aeromonas hydrophila in Oreochromis niloticus. Fish & Shellfish Immunology, v. 108, p. 147-156, 2021. https://doi.org/10.1016/j.fsi.2020.11.028. DOI: https://doi.org/10.1016/j.fsi.2020.11.028
NEUMANN, N.F. et al. Antimicrobial mechanisms of fish phagocytes and their role in host defense. Developmental & Comparative Immunology, v. 25, p. 807-825, 2001. https://doi.org/10.1016/S0145-305X(01)00037-4. DOI: https://doi.org/10.1016/S0145-305X(01)00037-4
NI, J. et al. Selenium nanoparticles coated with polysaccharide-protein complexes from abalone viscera improve growth and enhance resistance to diseases and hypoxic stress in juvenile Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, v. 134, p. 108624, 2023. https://doi.org/10.1016/j.fsi.2023.108624. DOI: https://doi.org/10.1016/j.fsi.2023.108624
OLIVEIRA, S.L. et al. Doxycycline treatment modulates the immune response of tilapia and controls Aeromonas hydrophila infection. Aquaculture, p. 740504, 2024. https://doi.org/10.1016/j.aquaculture.2023.740504. DOI: https://doi.org/10.1016/j.aquaculture.2023.740504
OTA, E.C. et al. Fish feed can show genotoxic damage. Fish Physiology and Biochemistry, v. 48, p. 735–748, 2022. https://doi.org/10.1007/s10695-022-01068-2. DOI: https://doi.org/10.1007/s10695-022-01068-2
PATEL, B. et al. Lactobacillus acidophilus attenuates Aeromonas hydrophila induced cytotoxicity in catla thymus macrophages by modulating oxidative stress and inflammation. Molecular Immunology, v. 75, p. 69–83, 2016. https://doi.org/10.1016/j.molimm.2016.05.012. DOI: https://doi.org/10.1016/j.molimm.2016.05.012
PINHEIRO-SOUSA, D.B. et al. A screening test based on hematological and histological biomarkers to evaluate the environmental impacts in tambaqui (Colossoma macropomum) from a protected area in Maranhão, Brazilian Amazon. Chemosphere, v. 214, p. 445-451, 2019. https://doi.org/10.1016/j.chemosphere.2018.09.146. DOI: https://doi.org/10.1016/j.chemosphere.2018.09.146
RANZANI-PAIVA, M.J.T. et al. Métodos para análise hematológica de peixes. Maringá: Eduem, 2013. DOI: https://doi.org/10.7476/9788576286530
REYES-BECERRIL, M. et al. Immune response of gilthead seabream (Sparus aurata) following experimental infection with Aeromonas hydrophila. Fish & Shellfish Immunology, v. 31, p. 564–570, 2011. https://doi.org/10.1016/j.fsi.2011.07.006. DOI: https://doi.org/10.1016/j.fsi.2011.07.006
RHODES, G. et al. Distribution of oxytetracycline resistance plasmids between Aeromonas in hospital and aquaculture environments: implication of Tet A. Applied and Environmental Microbiology, v. 66, p. 3883–3890, 2000. https://doi.org/10.1128/aem.66.9.3883-3890.2000. DOI: https://doi.org/10.1128/AEM.66.9.3883-3890.2000
RIEGER, A.M.; BARREDA, D.R. Antimicrobial mechanisms of fish leukocyte. Developmental and Comparative Immunology, v. 35, p. 1238–1245, 2011. https://doi.org/10.1016/j.dci.2011.03.009. DOI: https://doi.org/10.1016/j.dci.2011.03.009
SADO, R.Y.; BICUDO, A.J.A.; CYRINO, J.E.P. Dietary levamisole influenced hematological parameters of juvenile pacu, Piaractus mesopotamicus (Holmberg 1887). Journal of the World Aquaculture Society, v. 41, p. 5-75, 2010. https://doi.org/10.1111/j.1749-7345.2009.00334.x. DOI: https://doi.org/10.1111/j.1749-7345.2009.00334.x
SAPUTRA, F. et al. Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus), Fish & Shellfish Immunology, v. 58, p. 397-405, 2016. https://doi.org/10.1016/j.fsi.2016.09.046. DOI: https://doi.org/10.1016/j.fsi.2016.09.046
SAURABH, S.; SAHOO, P.K. Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, v. 39, p. 223-239, 2008. https://doi.org/10.1111/j.1365-2109.2007.01883.x. DOI: https://doi.org/10.1111/j.1365-2109.2007.01883.x
SCAPIGLIATI, G. Functional aspects of fish lymphocytes. Developmental & Comparative Immunology, v. 41, p. 200–208, 2013. https://doi.org/10.1016/j.dci.2013.05.012. DOI: https://doi.org/10.1016/j.dci.2013.05.012
SHAMEENA, S.S. et al. Dose-dependent co-infection of Argulus sp. and Aeromonas hydrophila in goldfish (Carassius auratus) modulates innate immune response and antioxidative stress enzymes. Fish & Shellfish Immunology, v. 114, p. 199–206, 2021. https://doi.org/10.1016/j.fsi.2021.04.026. DOI: https://doi.org/10.1016/j.fsi.2021.04.026
SHERIF, A.H.; MAHFOUZ, M.E. Immune status of Oreochromis niloticus experimentally infected with Aeromonas hydrophila following feeding with 1, 3 β-glucan and levamisole immunostimulants. Aquaculture, v. 509, p. 40-46, 2019. https://doi.org/10.1016/j.aquaculture.2019.05.016. DOI: https://doi.org/10.1016/j.aquaculture.2019.05.016
SHERIF, A.H. et al. Zinc oxide nanoparticles boost the immune responses in Oreochromis niloticus and improve disease resistance to Aeromonas hydrophila infection. Biological Trace Element Research, v. 201, p. 927–936, 2023. https://doi.org/10.1007/s12011-022-03183-w. DOI: https://doi.org/10.1007/s12011-022-03183-w
SIVAGURUNATHAN, A. et al. Immunostimulatory potential of dietary Amla (Phyllanthus emblica) in growth and haematology of Tilapia mossambicus challenged with Pseudomonas aeruginosa. International Research Journal of Pharmacy, v. 3, p. 165–168, 2012. Available from: http://www.irjponline.com/admin/php/uploads/1234_pdf.pdf. Accessed: Feb. 01, 2024.
SOOKSAWAT, T. et al. Influences of contamination of Aeromonas hydrophila, on quality, oxidative damage, and ultrastructure in cryopreserved sperm of the silver barb, Barbonymus gonionotus. Aquaculture, v. 547, p. 737440, 2022. https://doi.org/10.1016/j.aquaculture.2021.737440. DOI: https://doi.org/10.1016/j.aquaculture.2021.737440
STUART, L.M.; EZEKOWITZ, R.A. Phagocytosis: elegant complexity. Immunity, v. 22, p. 539–550, 2005. https://doi.org/10.1016/j.immuni.2005.05.002. DOI: https://doi.org/10.1016/j.immuni.2005.05.002
SUBRAMANI, P.A. et al. Cytotoxic effects of Aeromonas hydrophila culture supernatant on peripheral blood leukocytes of Nile tilapia (Oreochromis niloticus): possible presence of a secreted cytotoxic lectin. Fish & Shellfish Immunology, v. 58, p. 604-611, 2016. https://doi.org/10.1016/j.fsi.2016.09.061. DOI: https://doi.org/10.1016/j.fsi.2016.09.061
SUN, H. et al. Aeromonas hydrophila causes ferroptotic damage via its secreted effectors targeting splenic macrophages in teleost. Aquaculture, v. 579, p. 740203, 2024. https://doi.org/10.1016/j.aquaculture.2023.740203. DOI: https://doi.org/10.1016/j.aquaculture.2023.740203
TAVARES-DIAS, M.; MORAES, F.R. Características hematológicas de Tilapia rendalli Boulenger, 1896 (Osteichthyes: Cichlidae) capturada em “pesque-pague” de França, São Paulo, Brasil. Bioscience Journal, p. 19, p. 107-114, 2003. Available from: http://www.seer.ufu.br/index.php/biosciencejournal/article/view/6443. Accessed: Mar. 18, 2024.
TELLEZ-BAÑUELOS, M.C. et al. Endosulfan increases seric interleukin-2 like (IL-2L) factor and immunoglobulin M (IgM) of Nile tilapia (Oreochromis niloticus) challenged with Aeromonas hydrophila. Fish & Shellfish Immunoogy, v. 28, p. 401–405, 2010. https://doi.org/10.1016/j.fsi.2009.11.017. DOI: https://doi.org/10.1016/j.fsi.2009.11.017
TOMÁS, J.M. The main Aeromonas pathogenic factors. ISRN Microbiology, 2012. https://doi.org/10.5402/2012/256261. DOI: https://doi.org/10.5402/2012/256261
TRINDER, P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Analytical Clinical Biochemistry, v. 6, p. 24-27, 1969. https://doi.org/10.1177/000456326900600108. DOI: https://doi.org/10.1177/000456326900600108
TUKMECHI, A. et al. Dietary administration of beta-mercapto-ethanol treated Saccharomyces cerevisiae enhanced the growth, innate immune response and disease resistance of the rainbow trout, Oncorhynchus mykiss. Fish & Shellfish Immunology, v. 30, p. 923-928, 2011. https://doi.org/10.1016/j.fsi.2011.01.016. DOI: https://doi.org/10.1016/j.fsi.2011.01.016
URIBE, C. et al. Innate and adaptive immunity in teleost fish: A review. Veterinarni Medicina, v. 56, p. 486-503, 2011. 10.17221/3294-VETMED DOI: https://doi.org/10.17221/3294-VETMED
VANCE, R.E.; ISBERG, R.R.; PORTNOY, D.A. Patterns of pathogenesis: discrimination of pathogenic and non-pathogenic microbes by the innate immune system. Cell Host Microbe, v. 6, p.10e21, 2009. https://doi.org/10.1016/j.chom.2009.06.007. DOI: https://doi.org/10.1016/j.chom.2009.06.007
VALLEJOS-VIDAL, E. et al. The response of fish to immunostimulant diets. Fish & Shellfish Immunology, v. 56, p. 34-69, 2016. http://dx.doi.org/10.1016/j.fsi.2016.06.028. DOI: https://doi.org/10.1016/j.fsi.2016.06.028
ZAHRAN, E.; ABD EL-GAWAD, E.A.; RISHA, E. Dietary Withania sominefera root confers protective and immunotherapeutic effects against Aeromonas hydrophila infection in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, v. 80, p. 641-650, 2018. https://doi.org/10.1016/j.fsi.2018.06.009. DOI: https://doi.org/10.1016/j.fsi.2018.06.009
ZANON, R.B. et al. Dietary levamisole as immunostimulant for striped surubim, Pseudoplatystoma reticulatum. Journal of the World Aquacaculture Society, v. 45, p. 672-680, 2014. https://doi.org/10.1111/jwas.12156. DOI: https://doi.org/10.1111/jwas.12156
Copyright (c) 2024 Pesquisa Agropecuária Gaúcha
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Os autores declaram que o trabalho não foi publicado anteriormente, nem enviado simultaneamente para publicação em outro periódico e que concordam com a submissão, conteúdo e transferência dos direitos de publicação do artigo em questão para o periódico científico Pesquisa Agropecuária Gaúcha - PAG. Os autores assumem total responsabilidade pela originalidade do artigo, podendo incidir sobre os mesmos, eventuais encargos decorrentes de reivindicação, por parte de terceiros, em relação à autoria do artigo.
A reprodução total dos artigos da Revista em outros meios de comunicação eletrônicos de uso livre é permitida de acordo com a licença Creative Commons Atribuição-NãoComercial-CompartilhaIgual 4.0 Internacional.