Implicações nutricionais de proteases exógenas na alimentação de peixes

Palavras-chave: Antinutrientes, Crescimento, Enzima, Nutrição, Piscicultura

Resumo

O aumento na demanda da produção de peixes impulsiona a busca por estratégias alimentares a fim de maximizar a produtividade. Nesta revisão foram descritas as implicações nutricionais do uso de proteases exógenas sobre o crescimento dos peixes. As proteases exógenas auxiliam nos processos digestivos atuando na hidrólise de macromoléculas e na liberação de partículas menores, como aminoácidos e peptídeos. A suplementação dietética melhora o crescimento dos peixes, principalmente pela disponibilidade e maior aproveitamento dos nutrientes. A ação de proteases está ligada diretamente a melhor ingestão, eficiência alimentar e síntese de proteína. Por outro lado, a atividade da enzima depende do substrato e da composição dietética já que há limitações na digestibilidade. Além disso, no processamento de rações, a estabilidade térmica e a forma de inclusão da protease influenciam na sua eficiência. Contudo, o aumento no ganho em peso dos peixes pode compensar o custo de inclusão da enzima na dieta. No entanto, ainda existem lacunas quanto aos efeitos da protease na alimentação de peixes, como exemplos, relação enzima: substrato específico e enzima: sistema digestório; e, tecnologias de estabilização (principalmente, dietas extrusadas), por isso, são necessários estudos adicionais.

 

Downloads

Não há dados estatísticos.

Referências

ABD ELNABI, H. E. et al. Effect of protease and prebiotic mixtures with free fishmeal diets on physiological responses and histological examinations of the red Tilapia, Oreochromis sp. Egyptian Journal of Aquatic Biology and Fisheries, v. 24, n. 2, p. 361–378, 2020. DOI: https://doi.org/10.21608/EJABF.2020.82015 DOI: https://doi.org/10.21608/ejabf.2020.82015

ADEOYE, A. A. et al. Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes: Overall performance and effects on intestinal histology and microbiota. Animal Feed Science and Technology, v. 215, p. 133–143, 2016a. DOI: https://doi.org/10.1016/j.anifeedsci.2016.03.002 DOI: https://doi.org/10.1016/j.anifeedsci.2016.03.002

ADEOYE, A. A. et al. Combined effects of exogenous enzymes and probiotic on Nile tilapia (Oreochromis niloticus) growth, intestinal morphology and microbiome. Aquaculture, v. 463, p. 61–70, 2016b. DOI: https://doi.org/10.1016/j.aquaculture.2016.05.028 DOI: https://doi.org/10.1016/j.aquaculture.2016.05.028

ALI ZAMINI, A. et al. Effects of two dietary exogenous multi-enzyme supplementation, Natuzyme® and beta-mannanase (Hemicell®), on growth and blood parameters of Caspian salmon (Salmo trutta caspius). Comparative Clinical Pathology, v. 23, n. 1, p. 187–192, 2014. DOI: https://doi.org/10.1007/s00580-012-1593-4 DOI: https://doi.org/10.1007/s00580-012-1593-4

AMBARDEKAR, A. A.; REIGH, R. C.; WILLIAMS, M. B. Absorption of amino acids from intact dietary proteins and purified amino acid supplements follows different time-courses in channel catfish (Ictalurus punctatus). Aquaculture, v. 291, n. 3–4, p. 179–187, 2009. DOI: https://doi.org/10.1016/j.aquaculture.2009.02.044 DOI: https://doi.org/10.1016/j.aquaculture.2009.02.044

BALDISSEROTTO, B. Fisiologia de Peixes-Aplicada à piscicultura. 3. ed. Santa Maria, 2013. 350 p.

BOYD, C. E. et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, v. 51, n. 3, p. 578–633, 2020. DOI: https://doi.org/10.1111/jwas.12714 DOI: https://doi.org/10.1111/jwas.12714

BRAZILIAN FISH FARMING ASSOCIATION - PEIXE BR, 2021. Anuário Peixe BR da Piscicultura. 71 p. Available at: < https://www.peixebr.com.br/anuario-2021/ > Access at: November 11, 2021.

CAHU, C. et al. Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture, v. 238, n. 1–4, p. 295–308, 2004. DOI: https://doi.org/10.1016/j.aquaculture.2004.04.013 DOI: https://doi.org/10.1016/j.aquaculture.2004.04.013

CARTER, C. G. et al. Growth and feed utilization efficiencies of seawater Atlantic salmon, Salmo salar L., fed a diet containing supplementary enzymes. Aquaculture Research, v. 25, n. 1, p. 37–46, 1994. DOI: https://doi.org/10.1111/j.1365-2109.1994.tb00664.x DOI: https://doi.org/10.1111/j.1365-2109.1994.tb00664.x

CASTILLO, S.; GATLIN, D. M. Dietary supplementation of exogenous carbohydrase enzymes in fish nutrition: A review. Aquaculture, v. 435, p. 286–292, 2015. DOI: https://doi.org/10.1016/j.aquaculture.2014.10.011 DOI: https://doi.org/10.1016/j.aquaculture.2014.10.011

CHEN, J.M. et al. Effect of adding neutral protease to diets on growth performance, digestion and body composition of fingerling black carp (Mylopharyngodon piceus). Acta hydrobiologica sinica, v. 33, n. 4, p. 726–731, 2009. DOI: https://doi.org/10.3724/SP.J.1035.2009.40726 DOI: https://doi.org/10.3724/SP.J.1035.2009.40726

DABROWSKI, K.; GLOGOWSKI, J. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia, v. 54, n. 2, p. 129–134, 1977. DOI: https://doi.org/10.1007/BF00034986 DOI: https://doi.org/10.1007/BF00034986

DAI, B. et al. Effects of multienzyme complex and probiotic supplementation on the growth performance, digestive enzyme activity and gut microorganisms composition of snakehead (Channa argus). Aquaculture Nutrition, v. 00, p. 1–11, 2018. DOI: https://doi.org/10.1111/anu.12825 DOI: https://doi.org/10.1111/anu.12825

DALSGAARD, J. et al. Effects of exogenous enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed diets with high inclusion of plant-based protein. Animal Feed Science and Technology, v. 171, n. 2–4, p. 181–191, 2012. DOI: https://doi.org/10.1016/j.anifeedsci.2011.10.005 DOI: https://doi.org/10.1016/j.anifeedsci.2011.10.005

DALSGAARD, J. et al. Supplementing enzymes to extruded, soybean-based diet improves breakdown of non-starch polysaccharides in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, v. 22, n. 2, p. 419–426, 2016. DOI: https://doi.org/10.1111/anu.12258 DOI: https://doi.org/10.1111/anu.12258

DEBNATH, D. et al. Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aquaculture Research, v. 36, n. 2, p. 180–187, 2005. DOI: https://doi.org/10.1111/j.1365-2109.2004.01203.x DOI: https://doi.org/10.1111/j.1365-2109.2004.01203.x

DREW, M. D. et al. Effect of adding protease to coextruded flax:pea or canola:pea products on nutrient digestibility and growth performance of rainbow trout (Oncorhynchus mykiss). Animal Feed Science and Technology, v. 119, n. 1–2, p. 117–128, 2005. DOI: https://doi.org/10.1016/j.anifeedsci.2004.10.010 DOI: https://doi.org/10.1016/j.anifeedsci.2004.10.010

FARHANGI, M.; CARTER, C. G. Effect of enzyme supplementation to dehulled lupin-based diets on growth, feed efficiency, nutrient digestibility and carcass composition of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research, v. 38, n. 12, p. 1274–1282, 2007. DOI: https://doi.org/10.1111/j.1365-2109.2007.01789.x DOI: https://doi.org/10.1111/j.1365-2109.2007.01789.x

FOOD AND AGRICULTURAL ORGANIZATION – FAO, 2018. The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. Available at: < http://www.fao.org/3/i9540en/i9540en.pdf > Access at: April 04, 2020.

FOOD AND AGRICULTURAL ORGANIZATION - FAO, 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. DOI: https://doi.org/10.4060/ca9229en DOI: https://doi.org/10.4060/ca9229en

FRANCIS, G.; MAKKAR, H.P.S.; BECKER, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. ISSN 00448486. v. 199. 2001. DOI: https://doi.org/10.1016/S0044-8486(01)00526-9 DOI: https://doi.org/10.1016/S0044-8486(01)00526-9

GASCO, L. et al. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, v. 220, p. 34–45, 2016. DOI: https://doi.org/10.1016/j.anifeedsci.2016.07.003 DOI: https://doi.org/10.1016/j.anifeedsci.2016.07.003

GODA, A.M. et al. Partial replacement of dietary soybean meal by high-protein distiller’s dried grains (HPDDG) supplemented with protease enzyme for European seabass, Dicentrarchus labrax fingerlings. Aquaculture Nutrition, v. 26, n. 3, p. 842–852, 2019. DOI: https://doi.org/10.1111/anu.13043 DOI: https://doi.org/10.1111/anu.13043

GODA, M. A.A. et al. Effect of Using Baker’s Yeast and Exogenous Digestive Enzymes as Growth Promoters on Growth, Feed Utilization and Hematological Indices of Nile tilapia, Journal of Agricultural Science and Technology B, v. 2, p. 15–28, 2012.

GOLE, A. et al. On the preparation, characterization, and enzymatic activity of fungal protease-gold colloid bioconjugates. Bioconjugate Chemistry, v. 12, n. 5, p. 684–690, 2001. DOI: https://doi.org/10.1021/bc0001241 DOI: https://doi.org/10.1021/bc0001241

GOMES, V. D. S. et al. Suplementação Enzimática Sobre Desempenho E Taxa De Excreção De Amônia Em Tilápia Do Nilo. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, v. 22, n. 1, p. 13–20, 2019. DOI: https://doi.org/10.25110/arqvet.v22i1.2019.6847 DOI: https://doi.org/10.25110/arqvet.v22i1.2019.6847

HASSAAN, M.S. et al. Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Animal Feed Science and Technology, v. 275, p. 114892, 2021. DOI: https://doi.org/10.1016/j.anifeedsci.2021.114892 DOI: https://doi.org/10.1016/j.anifeedsci.2021.114892

HASSAAN, M.S. et al. Effect of dietary protease at different levels of malic acid on growth, digestive enzymes and haemato-immunological responses of Nile tilapia, fed fish meal free diets. Aquaculture, v. 522, p. 232–300, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735124 DOI: https://doi.org/10.1016/j.aquaculture.2020.735124

HASSAAN, M. S. et al. Partial dietary fish meal replacement with cotton seed meal and supplementation with exogenous protease alters growth, feed performance, hematological indices and associated gene expression markers (GH, IGF-I) for Nile tilapia, Oreochromis niloticus. Aquaculture, v. 503, p. 282–292, 2019. DOI: https://doi.org/10.1016/j.aquaculture.2019.01.009 DOI: https://doi.org/10.1016/j.aquaculture.2019.01.009

HARDY, R.W.; BARROWS F.T. Diet Formulation and Manufacture. In: HALVER, J.E.; HARDY, R.W. Fish Nutrition, 3.ed. eds. Academic Press, California, 2002, 894p. DOI: https://doi.org/10.1016/B978-012319652-1/50010-0

HENRY, M. A. et al. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Developmental and Comparative Immunology, v. 81, p. 204–209, 2018. DOI: https://doi.org/10.1016/j.dci.2017.12.002 DOI: https://doi.org/10.1016/j.dci.2017.12.002

HLOPHE-GININDZA, S. N. et al. The effect of exogenous enzyme supplementation on growth performance and digestive enzyme activities in Oreochromis mossambicus fed kikuyu-based diets. Aquaculture Research, v. 47, n. 12, p. 3777–3787, 2015. DOI: https://doi.org/10.1111/are.12828 DOI: https://doi.org/10.1111/are.12828

JACOBSEN, H.J. et al. Different enzyme incorporation strategies in Atlantic salmon diet containing soybean meal: Effects on feed quality, fish performance, nutrient digestibility and distal intestinal morphology. Aquaculture, v. 491, p. 302–309, 2018. DOI: https://doi.org/10.1016/j.aquaculture.2018.03.053 DOI: https://doi.org/10.1016/j.aquaculture.2018.03.053

JIANG, T. T. et al. Effects of exogenous xylanase supplementation in plant protein-enriched diets on growth performance, intestinal enzyme activities and microflora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition, v. 20, n. 6, p. 632–645, 2014. DOI: https://doi.org/10.1111/anu.12125 DOI: https://doi.org/10.1111/anu.12125

KEMIGABO, C. et al. Growth response of African catfish, Clarias gariepinus (B.), larvae and fingerlings fed protease-incorporated diets. Journal of Applied Ichthyology, v. 00, p. 1–8, 2019. DOI: https://doi.org/10.1111/jai.13877 DOI: https://doi.org/10.1111/jai.13877

KUMARI, R. et al. Chitosan Nanoencapsulated Exogenous Trypsin Biomimics Zymogen-Like Enzyme in Fish Gastrointestinal Tract. PLoS ONE, v. 8, n. 9, 2013. DOI: https://doi.org/10.1371/journal.pone.0074743 DOI: https://doi.org/10.1371/journal.pone.0074743

LARSEN, B. K.; DALSGAARD, J.; PEDERSEN, P. B. Effects of plant proteins on postprandial, free plasma amino acid concentrations in rainbow trout (Oncorhynchus mykiss). Aquaculture, v. 326–329, p. 90–98, 2012. DOI: https://doi.org/10.1016/j.aquaculture.2011.11.028 DOI: https://doi.org/10.1016/j.aquaculture.2011.11.028

LAZZARI, R. et al. Protein sources and digestive enzyme activities in jundiá (Rhamdia quelen). Scientia Agricola, v. 67, n. 3, p. 259–266, 2010. DOI: https://doi.org/10.1590/s0103-90162010000300002 DOI: https://doi.org/10.1590/S0103-90162010000300002

LEE, S. et al. Apparent digestibility of protein, amino acids and gross energy in rainbow trout fed various feed ingredients with or without protease. Aquaculture, v. 524, p. 735270, 2020. DOI: https://doi.org/10.1016/j.aquaculture.2020.735270 DOI: https://doi.org/10.1016/j.aquaculture.2020.735270

LENG, X. J., LIU, D. Y., LI, X. Q., LU, Y. H. Effects of protease on growth and digestive protease activities of Common Carp, Cyprinus carpio L. fingerling. Chinese Journal of Animal Nutrition, v. 20, p. 268–274, 2008.

LI, Q. et al. Commercial proteases: Present and future. FEBS Letters, v. 587, n. 8, p. 1155–1163, 2013. DOI: https://doi.org/10.1016/j.febslet.2012.12.019 DOI: https://doi.org/10.1016/j.febslet.2012.12.019

LI, X. Q. et al. Effects of temperature and feed processing on protease activity and dietary protease on growths of white shrimp, Litopenaeus vannamei, and tilapia, Oreochromis niloticus × O. aureus. Aquaculture Nutrition, v. 22, n. 6, p. 1283–1292, 2015. DOI: https://doi.org/10.1111/anu.12330 DOI: https://doi.org/10.1111/anu.12330

LIN, S.; MAI, K.; TAN, B. Effects of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus x O. aureus. Aquaculture Research, v. 38, n. 15, p. 1645–1653, 2007. DOI: https://doi.org/10.1111/j.1365-2109.2007.01825.x DOI: https://doi.org/10.1111/j.1365-2109.2007.01825.x

LIU, W. et al. Effects of dietary coated protease on growth performance, feed utilization, nutrient apparent digestibility, intestinal and hepatopancreas structure in juvenile Gibel carp (Carassius auratus gibelio). Aquaculture Nutrition, v. 24, n. 1, p. 47–55, 2016. DOI: https://doi.org/10.1111/anu.12531 DOI: https://doi.org/10.1111/anu.12531

MURA, U.; BAUER, C. PH influence on enzymic activity: The involvement of two active ionized forms of either substrate or enzyme in the reaction. Journal of Theoretical Biology, v. 75, n. 2, p. 181–188, 1978. DOI: https://doi.org/10.1016/0022-5193(78)90229-1 DOI: https://doi.org/10.1016/0022-5193(78)90229-1

NATIONAL RESEARCH COUNCIL - NRC. Nutrient requirements of fish and shrimp. Washington, D.C: National Academies Press, 2011. 376 p.

NELSON, D.L.; COX, M.M. Lehninger: principles of biochemistry. 4.ed. New York: W.H. Freeman. 2004.

PORTZ, L.; FURUYA, W.M. Energia, proteína e aminoácidos. Capítulo 4. p. 65-77. In.: FRACALOSSI, D.M.; CYRINO, J.E.P. NUTRIAQUA- Nutrição e alimentação de espécies de interesse para a aquicultura brasileira. Florianópolis: Sociedade Brasileira de Aquicultura e Biologia Aquática, 2012, 375 p.

OGUNKOYA, A. E. et al. Dietary incorporation of soybean meal and exogenous enzyme cocktail can affect physical characteristics of faecal material egested by rainbow trout (Oncorhynchus mykiss). Aquaculture, v. 254, n. 1–4, p. 466–475, 2006. DOI: https://doi.org/10.1016/j.aquaculture.2005.10.032 DOI: https://doi.org/10.1016/j.aquaculture.2005.10.032

RAGAA, N. M. et al. Effect of a serine-protease on performance parameters and protein digestibility of cultured Oreochromis niloticus fed diets with different protein levels. Pakistan Journal of Nutrition, v. 16, n. 3, p. 148–154, 2017. DOI: https://doi.org/10.3923/pjn.2017.148.154 DOI: https://doi.org/10.3923/pjn.2017.148.154

RODRIGUES, A.P.O. et al. Different utilization of plant sources by the omnivores jundiá catfish (Rhamdia quelen) and Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, v. 18, n. 1, p. 65–72, 2012. DOI: https://doi.org/10.1111/j.1365-2095.2011.00877.x DOI: https://doi.org/10.1111/j.1365-2095.2011.00877.x

RODRIGUEZ, Y.E. et al. Exogenous enzymes in aquaculture: Alginate and alginate-bentonite microcapsules for the intestinal delivery of shrimp proteases to Nile tilapia. Aquaculture, v. 490, p. 35–43, 2018. DOI: https://doi.org/10.1016/j.aquaculture.2018.02.022 DOI: https://doi.org/10.1016/j.aquaculture.2018.02.022

SALEH, E.S.E. et al. Effect of dietary protease supplementation on growth performance, water quality, blood parameters and intestinal morphology of Nile tilapia (Oreochromis niloticus). Journal of Animal Physiology and Animal Nutrition, v. 00, p. 1–10, 2021. DOI: https://doi.org/10.1111/jpn.13591 DOI: https://doi.org/10.1111/jpn.13591

SHI, Z. et al. Effects of protease supplementation in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carassius auratus gibelio. Aquaculture, v. 460, p. 37–44, 2016. DOI: https://doi.org/10.1016/j.aquaculture.2016.03.049 DOI: https://doi.org/10.1016/j.aquaculture.2016.03.049

SIMIÃO, C.S. et al. Use of exogenous enzymes in diets for juvenile pompano Trachinotus marginatus: Growth and liver and intestine morphophysiology. Boletim do Instituto de Pesca, v. 44, n. 4, 2018. DOI: https://doi.org/10.20950/1678-2305.2018.44.4.326 DOI: https://doi.org/10.20950/1678-2305.2018.44.4.326

SOARES, E.C. et al. Exogenous protease in diets for peacock bass (Cichla sp.) juveniles. Brazilian Journal of Animal Science, v. 37, n. 6, p. 971–976, 2008. DOI: https://doi.org/10.1590/s1516-35982008000600003 DOI: https://doi.org/10.1590/S1516-35982008000600003

WU, J.J. et al. Beneficial effects of dietary exogenous protease on the growth, intestinal health and immunity of GIFT (Oreochromis niloticus) fed plant-based diets. Aquaculture Nutrition, v. 26, n. 5, p. 1822–1834, 2020. DOI: https://doi.org/10.1111/anu.13132 DOI: https://doi.org/10.1111/anu.13132

YAMAMOTO, T.; UNUMA, T.; AKIYAMA, T. Postprandial Changes in Plasma Free Amino Acid Concentrations of Rainbow Trout Fed Diets Containing Different Protein Sources. Fisheries Science, v. 64, n. 3, p. 474–481, 1998. DOI: https://doi.org/10.2331/fishsci.64.474 DOI: https://doi.org/10.2331/fishsci.64.474

YEO, Y.; BAEK, N.; PARK, K. Microencapsulation methods for delivery os protein drugs. Biochemical Bioprocess Engineering, v. 6, p. 213–230, 2001. DOI: https://doi.org/10.1007/BF02931982

YIGIT, N. O. et al. Effect of protease and phytase supplementation on growth performance and nutrient digestibility of rainbow trout (Oncorhynchus mykiss) fed soybean meal-based diets. Journal of Applied Animal Research, v. 46, n. 1, p. 29–32, 2018. DOI: https://doi.org/10.1080/09712119.2016.1256292 DOI: https://doi.org/10.1080/09712119.2016.1256292

ZHAI, S.W.; LU, J.J.; CHEN, X.H. Effects of dietary grape seed proanthocyanidins on growth performance, some serum biochemical parameters and body composition of tilapia (Oreochromis niloticus) fingerlings. Italian Journal of Animal Science, v. 13, n. 3, p. 536–540, 2014. DOI: https://doi.org/10.4081/ijas.2014.3357 DOI: https://doi.org/10.4081/ijas.2014.3357

ZHENG, C. et al. Exogenous enzymes as functional additives in finfish aquaculture. Aquaculture Nutrition, v. 26, n. 2, p. 213–224, 2019. DOI: https://doi.org/10.1111/anu.12995 DOI: https://doi.org/10.1111/anu.12995

Publicado
2022-05-05
Como Citar
SCHNEIDER, T. L. S.; LAZZARI, R. Implicações nutricionais de proteases exógenas na alimentação de peixes. Pesquisa Agropecuária Gaúcha, v. 28, n. 1, p. 70-93, 5 maio 2022.